SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1 C2 EQ-Bank 4

Find the value of \(n\), given

\(\displaystyle \int_0^n-\dfrac{1}{\sqrt{1-x^2}}=-\dfrac{\pi}{6}\).   (2 marks)

Show Answers Only

\(n=\dfrac{1}{2}\)

Show Worked Solution
\(\displaystyle\int_0^n-\dfrac{1}{\sqrt{1-x^2}}\) \(=-\dfrac{\pi}{6}\)
\(\left[\cos ^{-1} x\right]_0^n\) \(=-\dfrac{\pi}{6}\)
\(\cos ^{-1}(n)-\cos ^{-1} 0\) \(=-\dfrac{\pi}{6}\)
\(\cos ^{-1}(n)-\dfrac{\pi}{2}\) \(=-\dfrac{\pi}{6}\)
\(\cos ^{-1}(n)\) \(=\dfrac{\pi}{2}-\dfrac{\pi}{6}\)
\(n\) \(=\cos \left(\dfrac{\pi}{3}\right)\)
  \(=\dfrac{1}{2}\)

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 4, smc-1037-30-Sin/Cos Integration

Calculus, EXT2 C2 EQ-Bank 3

  1. Find  \(\displaystyle \int \frac{1}{\sqrt{4 x-x^2}}\, d x\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Determine the values of \(x\) for which the antiderivative  \(\int \dfrac{1}{\sqrt{4 x-x^2}}\, d x\)  is real and finite.     (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\sin ^{-1}\left(\frac{x-2}{2}\right)+c\)

b.  \(0<x<4\)

Show Worked Solution
a.     \(\displaystyle\int \frac{1}{\sqrt{4 x-x^2}}\, d x\) \(=\displaystyle\int \frac{1}{\sqrt{4-4+4 x-x^2}}\, d x\)
    \(=\displaystyle\int \frac{1}{\sqrt{4-(x-2)^2}}\, d x\)
    \(=\sin ^{-1}\left(\dfrac{x-2}{2}\right)+c\)

 

b.    \(4 x-x^2>0\)

\(x(4-x)>0\)

\(0<x<4\)

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 3, Band 5, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 EQ-Bank 2

Find  \(\displaystyle \int \frac{1}{\sqrt{15-2 x-x^2}}\, d x\).   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\displaystyle\sin ^{-1}\left(\frac{x+1}{4}\right)+c\)

Show Worked Solution
\(\displaystyle\int \frac{1}{\sqrt{15-2 x-x^2}}\, d x\) \(=\displaystyle\int \frac{1}{\sqrt{16-1-2 x-x^2}}\, d x\)
  \(=\displaystyle\int \frac{1}{\sqrt{16-(x+1)^2}}\, d x\)
  \(=\displaystyle\sin ^{-1}\left(\frac{x+1}{4}\right)+c\)

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 4, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 EQ-Bank 1 MC

\(\displaystyle \int \dfrac{1}{\sqrt{5-4 x-x^2}}\, d x=\)
 

  1. \(\sin ^{-1}\left(\dfrac{x+2}{3}\right)+c \)
  2. \( \sin ^{-1}\left(\dfrac{x-2}{3}\right)+c \)
  3. \(\sin ^{-1}\left(\dfrac{x+2}{9}\right)+c \)
  4. \(\sin ^{-1}\left(\dfrac{x-2}{9}\right)+c\)
Show Answers Only

\(\Rightarrow A\)

Show Worked Solution
\(\displaystyle \int \frac{1}{\sqrt{5-4 x-x^2}}\, d x\) \(=\displaystyle\int \frac{1}{\sqrt{9-4-4 x-x^2}}\,dx\)
  \(=\displaystyle \int \frac{1}{\sqrt{9-(x+2)^2}}\,dx\)
  \(=\sin ^{-1}\left(\dfrac{x+2}{3}\right)+c\)

\(\Rightarrow A\)

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 4, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2023 HSC 11d

Find  \( {\displaystyle \int} \dfrac{1}{\sqrt{4-9x^2}}\ dx\)  (2 marks)

Show Answers Only

\(\dfrac{1}{3} \sin^{-1} \Big{(}\dfrac{3x}{2} \Big{)} +c \)

Show Worked Solution
\({\displaystyle \int} \dfrac{1}{\sqrt{4-9x^2}}\ dx\) \(=\dfrac{1}{3} {\displaystyle \int} \dfrac{3}{\sqrt{2^2-(3x)^2}}\ dx\)  
  \(=\dfrac{1}{3} \sin^{-1} \Big{(}\dfrac{3x}{2} \Big{)} +c \)  

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 3, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2021 HSC 11f

Evaluate  `int_0^sqrt3 1/(sqrt(4 - x^2))\ dx`.  (2 marks)

Show Answers Only

`pi/3`

Show Worked Solution
  `int_0^sqrt3 1/(sqrt(4 – x^2))\ dx` `= [sin^(-1)\ x/2]_0^sqrt3`
    `= sin^(-1)\ sqrt3/2 – sin^(-1) 0`
    `= pi/3`

Filed Under: Inverse Functions Calculus (Ext1) Tagged With: Band 3, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2004 HSC 1d

Find  `int_0^1(dx)/(sqrt(4 − x^2))`.  (2 marks) 

Show Answers Only

`pi/6`

Show Worked Solution
`int_0^1(dx)/(sqrt(4 − x^2))` `= [sin^(−1)\ x/2]_0^1`
  `= sin^(−1)(1/2) − sin^(−1)(0)`
  `= pi/6`

Filed Under: Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 3, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2015 HSC 7 MC

What is the value of `k` such that `int_0^k 1/sqrt(4 − x^2) \ dx= pi/3 ?`

  1. `1`
  2. `sqrt3`
  3. `2`
  4. `2sqrt3`
Show Answers Only

`B`

Show Worked Solution
`int_0^1 1/sqrt(4 − x^2)dx` `= pi/3`
`[sin^(−1)\ x/2]_0^k` `= pi/3`
`sin^(−1)\ k/2 − sin^(−1)\ 0` `= pi/3`
`sin^(−1)\ k/2` `= pi/3`
`k/2` `= sin\ pi/3`
  `= sqrt3/2`
`:.k` `= sqrt3`

`⇒ B`

Filed Under: 11. Integration EXT1, Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 3, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2008 HSC 1c

Evaluate  `int_-1^1 1/sqrt(4 - x^2)\ dx`.   (2 marks)

Show Answers Only

`pi/3`

Show Worked Solution

`int_-1^1 1/sqrt(4 – x^2)\ dx`

`= [sin^(-1) (x/2)]_(-1)^1`

`= sin^(-1) (1/2) – sin^(-1) (-1/2)`

`= pi/6 – (- pi/6)`

`= pi/3`

Filed Under: Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 3, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2013 HSC 11b

Find  `int 1/sqrt (49 - 4x^2)\ dx`.   (2 marks)

Show Answers Only

`1/2 sin^(-1) ((2x)/7) + c`

Show Worked Solution

`int 1/sqrt(49 – 4x^2)\ dx`

`= int 1/(2 sqrt(49/4 – x^2))\ dx`

`= 1/2 int 1/sqrt((7/2)^2 – x^2)\ dx`

`= 1/2 sin^(-1) ((2x)/7) + c`

Filed Under: 11. Integration EXT1, Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 4, smc-1037-30-Sin/Cos Integration

Calculus, EXT1 C2 2010 HSC 1a

Use the table of standard integrals to find  `int 1/sqrt(4 - x^2)\ dx`.    (1 mark)

Show Answers Only

 `sin^(-1)\ x/2 + c`

Show Worked Solution

`int 1/sqrt(4\ – x^2)\ dx`

`= sin^(-1)\ x/2 + c`

Filed Under: 11. Integration EXT1, Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 2, smc-1037-30-Sin/Cos Integration

Copyright © 2014–2025 SmarterEd.com.au · Log in