Find \(\displaystyle \int \sin 3x \, \cos x \, dx\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find \(\displaystyle \int \sin 3x \, \cos x \, dx\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(-\dfrac{1}{8} \cos 4 x-\dfrac{1}{4} \cos 2 x+c\)
| \(\displaystyle\int \sin3x \, \cos x \, dx\) | \(=\displaystyle\frac{1}{2} \int \sin 4 x+\sin2x \,dx\) |
| \(=-\dfrac{1}{8} \cos 4 x-\dfrac{1}{4} \cos 2 x+c\) |
Find `int_0^(pi/2) cos 5x\ sin 3x\ dx`. (3 marks)
`−1/2`
| `int_0^(pi/2) cos 5x\ sin 3x\ dx` | `= 1/2 int_0^(pi/2) 2cos 5x\ sin 3x\ dx` |
| `= 1/2 int_0^(pi/2) sin 8x-sin 2x\ dx` | |
| `= 1/2[−1/8 cos 8x + 1/2 cos 2x]_0^(pi/2)` | |
| `= 1/2[(−1/8 cos 4pi + 1/2 cospi)-(−1/8 cos0 + 1/2 cos0)]` | |
| `= 1/2(−1/8-1/2 + 1/8-1/2)` | |
| `= −1/2` |
The diagram shows the two curves `y = sin x` and `y = sin(x - alpha) + k`, where `0 < alpha < pi` and `k > 0`. The two curves have a common tangent at `x_0` where `0 < x_0 < pi/2`.
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
| i. | `y_1` | `= sin x` |
| `(dy_1)/(dx)` | `= cos x` | |
| `y_2` | `= sin(x – alpha) + k` | |
| `(dy_2)/(dx)` | `= cos (x – alpha)` |
`text(At)\ \ x = x_0,\ \ text(tangent is common)`
`:. cos x_0 = cos(x_0 – alpha)`
ii. `x_0\ \ text{is in 1st quadrant (given)}`
`text{Using part (i):}`
`cos\ x_0 = cos(x_0 – alpha) >0`
`=> x_0 – alpha\ \ \ text(is in 4th quadrant)\ \ (0 < alpha < pi)`
`text(S)text(ince sin is positive in 1st quadrant and)`
`text(negative in 4th quadrant)`
`=> sin x_0 = -sin(x_0 – alpha)`
| iii. |
`text(When)\ \ x = x_0,`
| `y_1` | `=sin x_0` | |
| `y_2` | `=sin(x_0 – alpha) + k` | |
| `sin x_0` | `=sin (x_0 – alpha) + k` | |
| `= -sin x_0 + k` | ||
| `k` | `== 2\ sin x_0` |
| `text(S)text(ince)\ \ cos x_0` | `= cos(x_0 – alpha)` |
| `x_0` | `= -(x_0 – alpha)` |
| `2x_0` | `= alpha` |
| `x_0` | `= alpha/2` |
`:. k = 2 sin\ alpha/2`
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `sin (5x + 4x) + sin (5x-4x) = 2 sin(5x) cos(4x)`
| `text(LHS)` | `= sin (5x) cos (4x)-sin(4x) cos (5x) + sin (5x) cos (4x)+ sin (4x) cos (5x)` |
| `= 2 sin (5x) cos (4x)\ \ text(… as required)` |
ii. `int sin (5x) cos (4x)\ dx`
`= 1/2 int 2 sin (5x) cos (4x)\ dx`
`= 1/2 int sin (5x + 4x) + sin (5x-4x)\ dx`
`= 1/2 int sin (9x) + sin (x)\ dx`
`= 1/2 [-1/9 cos(9x)-cos(x)] + c`
`= -1/18 cos(9x)-1/2 cos(x) + c`