Use mathematical induction to prove that \({ }^{2 n} C_n<2^{2 n-2}\), for all integers \(n \geq 5\). (3 marks) --- 12 WORK AREA LINES (style=lined) --- \(\text{Prove \({ }^{2 n} C_n<2^{2 n-2}\) for \(n \geqslant 5\).}\) \(\text {If}\ \ n=5:\) \(\text{LHS}={ }^{10} C_5=252\) \(\text{RHS}=2^8=256>\text {LHS }\) \(\therefore\ \text{True for}\ \ n=5\) \(\text {Assume true for } n=k:\) \({ }^{2 k} C_k<2^{2 k-2}\ \ldots\ (1)\) \(\text{Prove true for}\ \ n=k+1:\) \(\text{i.e. } {}^{2 k+2}C_{k+1}<2^{2 k}\) \(\therefore \text{ Since true for \(n=5\), by PMI, true for integers \(n \geqslant 5\).}\) \(\text{Prove \({ }^{2 n} C_n<2^{2 n-2}\) for \(n \geqslant 5\).}\) \(\text {If}\ \ n=5:\) \(\text{LHS}={ }^{10} C_5=252\) \(\text{RHS}=2^8=256>\text {LHS }\) \(\therefore\ \text{True for}\ \ n=5\) \(\text {Assume true for } n=k:\) \({ }^{2 k} C_k<2^{2 k-2}\ \ldots\ (1)\) \(\text{Prove true for}\ \ n=k+1:\) \(\text{i.e. } {}^{2 k+2}C_{k+1}<2^{2 k}\) \(\therefore \text{ Since true for \(n=5\), by PMI, true for integers \(n \geqslant 5\).}\)
\(\text{LHS}\)
\(=\dfrac{(2 k+2)!}{(k+1)!(k+1)!}\)
\(=\dfrac{(2 k)!}{k!k!} \times \dfrac{(2 k+1)(2 k+2)}{(k+1)(k+1)}\)
\(={ }^{2 k} C_k \times 2 \times \dfrac{2 k+1}{k+1}\)
\(< 2^{k-2} \times 2 \times \dfrac{2 k+1}{k+1}\)
\(<2^k \ \ \ \left(\text{since}\ \dfrac{2 k+1}{k+1}=2-\dfrac{1}{k+1}<2\right)\)
\(\Rightarrow \text{True for}\ \ n=k+1\)
\(\text{LHS}\)
\(=\dfrac{(2 k+2)!}{(k+1)!(k+1)!}\)
\(=\dfrac{(2 k)!}{k!k!} \times \dfrac{(2 k+1)(2 k+2)}{(k+1)(k+1)}\)
\(={ }^{2 k} C_k \times 2 \times \dfrac{2 k+1}{k+1}\)
\(< 2^{k-2} \times 2 \times \dfrac{2 k+1}{k+1}\)
\(<2^k \ \ \ \left(\text{since}\ \dfrac{2 k+1}{k+1}=2-\dfrac{1}{k+1}<2\right)\)
\(\Rightarrow \text{True for}\ \ n=k+1\)
Proof, EXT2 P2 2024 HSC 14b
Use mathematical induction to prove that \({ }^{2 n} C_n<2^{2 n-2}\), for all integers \(n \geq 5\). (3 marks) --- 12 WORK AREA LINES (style=lined) ---