Consider the solutions of the equation \(z^4=-9\).
What is the product of all of the solutions that have a positive principal argument?
- \(3\)
- \(-3\)
- \(3 i\)
- \(-3 i\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Consider the solutions of the equation \(z^4=-9\).
What is the product of all of the solutions that have a positive principal argument?
\(B\)
\(z^4=-9\)
\(\text{Convert}\ z^4 \ \text{to Mod/Arg form:}\)
\(\left|z^4\right|=9, \ \ \arg \left(z^4\right)=\pi \ \text{(\(-9\) is on negative real axis})\)
\(\text{By De Moivre:}\)
\(\abs{z}=\sqrt[4]{9}=\sqrt{3}\)
\(\arg (z)=\dfrac{\pi}{4}\)
\(\text{Roots are} \ \ \dfrac{\pi}{2} \ \ \text{rotations of}\ \ z=\sqrt{3} \, \text{cis}\left(\dfrac{\pi}{4}\right)\)
\(z=\sqrt{3} \, \text{cis}\left( \pm \dfrac{\pi}{4}\right), z=\sqrt{3} \, \text{cis}\left( \pm \dfrac{3 \pi}{4}\right)\)
\(\sqrt{3}\, \text{cis}\left(\dfrac{\pi}{4}\right) \cdot \sqrt{3} \, \text{cis}\left(\dfrac{3 \pi}{4}\right)=3 \, \text{cis}(\pi)=-3\)
\(\Rightarrow B\)
The complex number \(2+i\) is a zero of the polynomial
\(P(z)=z^4-3 z^3+c z^2+d z-30\)
where \(c\) and \(d\) are real numbers.
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. \(\text{Since all coefficients are real and given}\ P(x)\ \text{has a complex root} \)
\((2+i), \ \text{then its conjugate pair}\ (2-i)\ \text{is also a root.} \)
ii. \(\text{Remaining zeros:}\ \ -3, 2 \)
i. \(\text{Since all coefficients are real and given}\ P(x)\ \text{has a complex root} \)
\((2+i), \ \text{then its conjugate pair}\ (2-i)\ \text{is also a root.} \)
ii. \(P(z)=z^4-3 z^3+c z^2+d z-30\)
\(\text{Let roots be:}\ \ 2+i, 2-i, \alpha, \beta \)
\( \sum\ \text{roots:}\)
\(2+i+2-i+\alpha + \beta\) | \(=-\dfrac{b}{a} \) | |
\(4+\alpha+\beta\) | \(=3\) | |
\(\alpha + \beta\) | \(=-1\ \ \ …\ (1) \) |
\(\text{Product of roots:} \)
\((2+i)(2-i)\alpha\beta \) | \(= \dfrac{e}{a} \) | |
\(5\alpha\beta\) | \(=-30\) | |
\(\alpha \beta \) | \(=-6\ \ \ …\ (2) \) |
\(\text{Substitute}\ \ \beta=-\alpha-1\ \ \text{into (2):} \)
\(\alpha(-\alpha-1) \) | \(=-6 \) | |
\(-\alpha^2-\alpha \) | \(=-6\) | |
\(\alpha^2+\alpha-6\) | \(=0\) | |
\( (\alpha+3)(\alpha-2) \) | \(=0\) |
\(\therefore\ \text{Remaining zeros:}\ \ -3, 2 \)
Consider the equation `z^5+1=0`, where `z` is a complex number.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
i. `z^5+1=0\ \ =>\ \ z^5=-1`
`z=e^(i((2k+1)/5)),\ \ kin{0,1,-1,2,-2}`
`:.z=e^(i(pi)/5), e^(i(3pi)/5), e^(-i(pi)/5), -1, e^(-i(3pi)/5)`
ii. `z^5+1=(z+1)(z^4-z^3+z^2-z+1)`
`text{Given}\ \ z!=-1,`
`z^4-z^3+z^2-z+1=0`
`text{Divide by}\ z^2\ \ (z!=0)`
`z^2-z+1-1/z+1/z^2` | `=0` | |
`z^2+1/z^2-(z+1/z)+1` | `=0` | |
`z^2+2+1/z^2-(z+1/z)-1` | `=0` | |
`(z+1/z)^2-(z-1/z)-1` | `=0` |
`text{Let}\ \ u=z+1/z:`
`:.u^2-u-1=0`
iii. `u^2-u-1=0`
`text{By quadratic formula:}`
`u` | `=(1+-sqrt(1-4xx1xx(-1)))/(2)` | |
`=(1+-sqrt5)/2` |
`z+1/z` | `=(1+-sqrt5)/2` | |
`e^(i(3pi)/5)+e^(-i(3pi)/5)` | `=(1-sqrt5)/2,\ \ (cos\ (3pi)/5 <0)` | |
`2cos((3pi)/5)` | `=(1-sqrt5)/2` | |
`cos((3pi)/5)` | `=(1-sqrt5)/4` |
Find all solutions for `z`, in exponential form, given `z^4 = -2 sqrt3 - 2 i`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`sqrt2 e^(-frac{i 17 pi}{24}) \ , \ sqrt2 e^(-frac{i 5 pi}{24}) \ , \ sqrt2 e^(frac{i 7 pi}{24}) \ , \ sqrt2 e^(frac{i 19 pi}{24})`
`text{Convert} \ \ z^4\ \ text{to Mod/Arg:}`
`| z^4 | = sqrt{(2 sqrt3)^2 + 2^2} = 4`
`tan \ theta` | `= frac{2 sqrt3}{2} = sqrt3` |
`theta` | `= frac{pi}{3}` |
`text{arg} (z^4) = – (frac{pi}{2} + frac{pi}{3}) = – frac{5 pi}{6}`
`text{By De Moivre:}`
`| z | = root4 (4) = sqrt2`
`text{arg}(z) = -frac{5 pi}{24} + frac{ k pi}{2} \ , \ k = 0 , ± 1 , ± 2`
`k = 0:\ text{arg} (z)=-frac{5 pi}{24}`
`k = 1:\ text{arg} (z)= -frac{5 pi}{24} + frac{pi}{2} = frac{7 pi}{24}`
`k = – 1:\ text{arg} (z)= -frac{5 pi}{24} – frac{pi}{2} = frac{-17 pi}{24}`
`k = 2:\ text{arg} (z)= -frac{5 pi}{24} + pi = frac{19 pi}{24}`
`therefore \ text{Solutions are:} \ sqrt2 e^(- frac{i 17 pi}{24}) \ , \ sqrt2 e^(frac{ -i 5 pi}{24}) \ , \ sqrt2 e^(frac{i 7 pi}{24}) \ , \ sqrt2 e^(frac{i 19 pi}{24})`
`z = sqrt2 e^((ipi)/15)` is a root of the equation `z^5 = alpha(1 + isqrt3), \ alpha ∈ R`.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `beta = 1 + isqrt3`
`|beta| = sqrt(1 + (sqrt3)^2) = 2`
`text(arg)(beta) = tan^(−1) (sqrt3/1) = pi/3`
`beta = 2e^((ipi)/3)`
ii. | `z` | `= sqrt2 e^((ipi)/15)` |
`z^5` | `= (sqrt2 e^((ipi)/15))^5` | |
`= (sqrt2)^5 e^((ipi)/15 xx 5)` | ||
`= 4sqrt2 e^((ipi)/3)` |
`:. alpha = 2sqrt2`
iii. `text(arg)(z^5) = pi/3 + 2kpi, \ \ k = 0, ±1, ±2, …`
`text(arg)(z) = pi/15 + (2kpi)/5`
`k = 1:\ text(arg)(z) = pi/15 + (2pi)/5 = (11pi)/15`
`k = text(−1):\ text(arg)(z) = pi/15 – (2pi)/5 = −pi/3`
`k = 2:\ text(arg)(z) = pi/15 + (4pi)/5 = (13pi)/15`
`k =text(−2):\ text(arg)(z) = pi/15 – (4pi)/5 = −(11pi)/15`
`:. 4\ text(other roots are:)`
`e^((i11pi)/15), e^(−(ipi)/3), e^((i13pi)/15), e^(−(i11pi)/15)`
Which complex number is a 6th root of `i`?
`A`
The complex number `z` is chosen so that `1, z, …, z^7` form the vertices of the regular polygon shown.
Which polynomial equation has all of these complex numbers as roots?
`C`
`P(x)\ \ text(has 8 separate roots.)`
`:.\ text(Must be of degree at least 8.)`
`text(S) text(ince 1 is also a root,)`
`=> C`
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `z` | `=cos theta+i sin theta` |
`z^5` | `=cos\ 5 theta+i sin\ 5 theta=-1,\ \ \ \ text{(De Moivre)}` | |
`:. cos\ 5 theta` | `=-1` | |
`5 theta` | `=pi,\ 3pi,\ 5pi,\ 7pi,\ 9pi` | |
`theta` | `=pi/5,\ (3pi)/5,\ pi,\ (7pi)/5,\ (9pi)/5` |
`:.\ text(The roots are)`
`z_1 = text(cis)\ pi/5,\ \ \ z_2 = text(cis)\ (3 pi)/5,\ \ \ z_3 = text(cis) pi=-1,`
`z_4 = text(cis)\ (7 pi)/5,\ \ z_5 = text(cis)\ (9 pi)/5`
ii. |