SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, EXT2 N2 2025 HSC 15c

  1. Show that
  2.     \(\dfrac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=i \cot \dfrac{\theta}{2}.\)   (3 marks)

    --- 12 WORK AREA LINES (style=lined) ---

  3. Use De Moivre's theorem to show that the sixth roots of \(-1\) are given by 
  4.    \(\cos \left(\dfrac{(2 k+1) \pi}{6}\right)+i \sin \left(\dfrac{(2 k+1) \pi}{6}\right)\)  for  \(k=0,1,2,3,4,5\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  5. Hence, or otherwise, show the solutions to  \(\left(\dfrac{z-1}{z+1}\right)^6=-1\)  are 
  6. \(z=i \cot \left(\dfrac{\pi}{12}\right), i \cot \left(\dfrac{3 \pi}{12}\right), i \cot \left(\dfrac{5 \pi}{12}\right), i \cot \left(\dfrac{7 \pi}{12}\right), i \cot \left(\dfrac{9 \pi}{12}\right)\), and \(i \cot \left(\dfrac{11 \pi}{12}\right)\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Show} \ \ \dfrac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=i \cot \left(\dfrac{\theta}{2}\right)\)

\(\text{LHS}\) \(=\dfrac{1+e^{i \theta}}{1-e^{i \theta}} \times \dfrac{e^{-\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}}\)
  \(=\dfrac{e^{-\tfrac{i \theta}{2}}+e^{\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}-e^{\tfrac{i \theta}{2}}}\)
  \(=\dfrac{2 \cos \left(\frac{\theta}{2}\right)}{-2 i \sin \left(\frac{\theta}{2}\right)}\)
  \(=i \cot \left(\frac{\theta}{2}\right)\)

 

ii.    \(z=\cos \theta+i \sin \theta\)

\(\text{Find sixth roots of}\ -1 \ \text{(by De Moivre):}\)

\(z^6=\cos (6 \theta)+i \sin (6 \theta)=-1\)

\(\cos (6 \theta)\) \(=-1 \ \text{and} \ \ \sin (6 \theta)=0\)
\(6 \theta\) \(=\pi, 3 \pi, 5 \pi, \ldots\)
\(\theta\) \(=\dfrac{(2 k+1) \pi}{6}\ \ \text{for}\ \ k=0,1,2, \ldots, 5\)

 
\(\therefore \operatorname{Roots }=\cos \left(\dfrac{(2 k+1) \pi}{6}\right)+i \sin \left(\dfrac{(2 k+1) \pi}{6}\right) \ \  \text{for} \ \ k=0,1, \ldots, 5\)
 

iii.  \(\left(\dfrac{z-1}{z+1}\right)^6=-1\)

\(\text {Let} \ \ \alpha=\dfrac{z-1}{z+1} \ \Rightarrow \ \alpha^6=-1\)
 

\(\text {Using part (ii):}\)

\(\alpha=\operatorname{cis}\left(\dfrac{(2 k+1) \pi}{6}\right) \ \ \text{for}\ \ k=0,1,2,3,4,5\ \ldots\ (1)\)

\(\alpha=\dfrac{z-1}{z+1}\  \ \Rightarrow\ \ \alpha z+\alpha=z-1 \ \ \Rightarrow\ \ z=\dfrac{1+\alpha}{1-\alpha}\)
 

\(\text{Consider} \ \ \alpha=\operatorname{cis}\left(\dfrac{\pi}{6}\right) \ \text{(i.e. where}\ \ k=0 \ \ \text{from (1) above):}\)

\(z=\dfrac{1+\operatorname{cis}\left(\dfrac{\pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{\pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{\pi}{12}\right) \quad \text{(using part (i))}\)

\(\text{Similarly}\ (k=1), \ z=\dfrac{1+\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{3 \pi}{12}\right)\)

\(\therefore z=i \cot \left(\dfrac{\pi}{12}\right), \, i \cot \left(\dfrac{3 \pi}{12}\right), \, i \cot \left(\dfrac{5 \pi}{12}\right), \ldots, i \cot \left(\dfrac{11 \pi}{12}\right)\)

 

Show Worked Solution

i.    \(\text{Show} \ \ \dfrac{1+\cos \theta+i \sin \theta}{1-\cos \theta-i \sin \theta}=i \cot \left(\dfrac{\theta}{2}\right)\)

\(\text{LHS}\) \(=\dfrac{1+e^{i \theta}}{1-e^{i \theta}} \times \dfrac{e^{-\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}}\)
  \(=\dfrac{e^{-\tfrac{i \theta}{2}}+e^{\tfrac{i \theta}{2}}}{e^{-\tfrac{i \theta}{2}}-e^{\tfrac{i \theta}{2}}}\)
  \(=\dfrac{2 \cos \left(\frac{\theta}{2}\right)}{-2 i \sin \left(\frac{\theta}{2}\right)}\)
  \(=i \cot \left(\frac{\theta}{2}\right)\)

 

ii.    \(z=\cos \theta+i \sin \theta\)

\(\text{Find sixth roots of}\ -1 \ \text{(by De Moivre):}\)

\(z^6=\cos (6 \theta)+i \sin (6 \theta)=-1\)

\(\cos (6 \theta)\) \(=-1 \ \text{and} \ \ \sin (6 \theta)=0\)
\(6 \theta\) \(=\pi, 3 \pi, 5 \pi, \ldots\)
\(\theta\) \(=\dfrac{(2 k+1) \pi}{6}\ \ \text{for}\ \ k=0,1,2, \ldots, 5\)

 
\(\therefore \operatorname{Roots }=\cos \left(\dfrac{(2 k+1) \pi}{6}\right)+i \sin \left(\dfrac{(2 k+1) \pi}{6}\right) \ \  \text{for} \ \ k=0,1, \ldots, 5\)
 

iii.  \(\left(\dfrac{z-1}{z+1}\right)^6=-1\)

\(\text {Let} \ \ \alpha=\dfrac{z-1}{z+1} \ \Rightarrow \ \alpha^6=-1\)
 

\(\text {Using part (ii):}\)

\(\alpha=\operatorname{cis}\left(\dfrac{(2 k+1) \pi}{6}\right) \ \ \text{for}\ \ k=0,1,2,3,4,5\ \ldots\ (1)\)

\(\alpha=\dfrac{z-1}{z+1}\  \ \Rightarrow\ \ \alpha z+\alpha=z-1 \ \ \Rightarrow\ \ z=\dfrac{1+\alpha}{1-\alpha}\)
 

\(\text{Consider} \ \ \alpha=\operatorname{cis}\left(\dfrac{\pi}{6}\right) \ \text{(i.e. where}\ \ k=0 \ \ \text{from (1) above):}\)

\(z=\dfrac{1+\operatorname{cis}\left(\dfrac{\pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{\pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{\pi}{12}\right) \quad \text{(using part (i))}\)

\(\text{Similarly}\ (k=1), \ z=\dfrac{1+\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)}{1-\operatorname{cis}\left(\dfrac{3 \pi}{6}\right)} \ \Rightarrow \ z=i \cot \left(\dfrac{3 \pi}{12}\right)\)

\(\therefore z=i \cot \left(\dfrac{\pi}{12}\right), \, i \cot \left(\dfrac{3 \pi}{12}\right), \, i \cot \left(\dfrac{5 \pi}{12}\right), \ldots, i \cot \left(\dfrac{11 \pi}{12}\right)\)

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 4, Band 5, Band 6, smc-1050-30-Roots > 3, smc-1050-40-De Moivre and trig identities

Complex Numbers, EXT2 N2 2025 HSC 14c

Let \(w\) be a complex number such that  \(1+w+w^2+\cdots+w^6=0\).

  1. Show that \(w\) is a 7th root of unity.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

The complex number  \(\alpha=w+w^2+w^4\)  is a root of the equation  \(x^2+b x+c=0\), where \(b\) and \(c\) are real and \(\alpha\) is not real.

  1. Find the other root of  \(x^2+b x+c=0\)  in terms of positive powers of \(w\).  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Find the numerical value of \(c\).  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{If \(w\) is a \(7^{\text{th}}\) root of \(1 \ \Rightarrow \ w^7=1\)}\)

\(1+w+w^2+\ldots+w^6=0\ \text{(given)}\)

\((1-w)\left(1+w+w^2+\cdots+w^6\right)\) \(=0\)
\(1-w^7\) \(=0\)
\(w^7=1\) \(=1\)

ii.   \(w^6+w^5+w^3\)

iii.  \(2\)

Show Worked Solution

i.    \(\text{If \(w\) is a \(7^{\text{th}}\) root of \(1 \ \Rightarrow \ w^7=1\)}\)

\(1+w+w^2+\ldots+w^6=0\ \ \text{(given,}\ w\neq 1)\)

\((1-w)\left(1+w+w^2+\cdots+w^6\right)\) \(=0\)
\(1-w^7\) \(=0\)
\(w^7\) \(=1\)

 
ii.
    \(\text {Find the other root of:} \ \ x^2+b x+c=0\)

\(\text{Since \(b, c\) are real (given),}\)

\(\text{Using conjugate root theory, other root}\ =\bar{\alpha}\)

\(\bar{\alpha}\) \(=\overline{w+w^2+w^4}\)
  \(=\overline{w}+\overline{w^2}+\overline{w^4}\)
  \(=\dfrac{1}{w}+\dfrac{1}{w^2}+\dfrac{1}{w^4} \quad\left( \bar{w}=\dfrac{1}{w} \ \text{since} \ \ \abs{w}=1\right)\)
  \(=\dfrac{w^7}{w}+\dfrac{w^7}{w^2}+\dfrac{w^7}{w^4}\)
  \(=w^6+w^5+w^3\)

 

iii.    \(\text{Product of roots}=\dfrac{c}{a}=c\)

\(c\) \(=\left(w+w^2+w^4\right)\left(w^6+w^5+w^3\right)\)
  \(=w^7+w^6+w^4+w^8+w^7+w^5+w^{10}+w^9+w^7\)
  \(=1+w^6+w^4+\left(w^7 \cdot w\right)+1+w^5+\left(w^7 \cdot w^3\right)+\left(w^7 \cdot w^2\right)+1\)
  \(=2+\underbrace{1+w+w^2+w^3+w^4+w^5+w^6}_{=0}\)
  \(=2\)

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 4, Band 5, smc-1050-10-Quadratic roots, smc-1050-30-Roots > 3, smc-1050-35-Conjugate roots

Complex Numbers, EXT2 N2 2024 HSC 9 MC

Consider the solutions of the equation  \(z^4=-9\).

What is the product of all of the solutions that have a positive principal argument?

  1. \(3\)
  2. \(-3\)
  3. \(3 i\)
  4. \(-3 i\)
Show Answers Only

\(B\)

Show Worked Solution

\(z^4=-9\)

\(\text{Convert}\ z^4 \ \text{to Mod/Arg form:}\)

\(\left|z^4\right|=9, \ \ \arg \left(z^4\right)=\pi \ \text{(\(-9\) is on negative real axis})\)

Mean mark 57%.

\(\text{By De Moivre:}\)

   \(\abs{z}=\sqrt[4]{9}=\sqrt{3}\)

   \(\arg (z)=\dfrac{\pi}{4}\)

\(\text{Roots are} \ \ \dfrac{\pi}{2} \ \ \text{rotations of}\ \  z=\sqrt{3} \, \text{cis}\left(\dfrac{\pi}{4}\right)\)

\(z=\sqrt{3} \, \text{cis}\left( \pm \dfrac{\pi}{4}\right), z=\sqrt{3} \, \text{cis}\left( \pm \dfrac{3 \pi}{4}\right)\)

\(\sqrt{3}\, \text{cis}\left(\dfrac{\pi}{4}\right) \cdot \sqrt{3} \, \text{cis}\left(\dfrac{3 \pi}{4}\right)=3 \, \text{cis}(\pi)=-3\)

\(\Rightarrow B\)

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 4, smc-1050-30-Roots > 3

Complex Numbers, EXT2 N2 2023 HSC 12e

The complex number  \(2+i\)  is a zero of the polynomial

\(P(z)=z^4-3 z^3+c z^2+d z-30\)

where \(c\) and \(d\) are real numbers.

  1. Explain why  \(2-i\)  is also a zero of the polynomial \(P(z)\).  (1 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the remaining zeros of the polynomial \(P(z)\).  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Since all coefficients are real and given}\ P(x)\ \text{has a complex root} \)

\((2+i), \ \text{then its conjugate pair}\ (2-i)\ \text{is also a root.} \)

ii.   \(\text{Remaining zeros:}\ \ -3, 2 \)

Show Worked Solution

i.    \(\text{Since all coefficients are real and given}\ P(x)\ \text{has a complex root} \)

\((2+i), \ \text{then its conjugate pair}\ (2-i)\ \text{is also a root.} \)

 

ii.    \(P(z)=z^4-3 z^3+c z^2+d z-30\)

\(\text{Let roots be:}\ \ 2+i, 2-i, \alpha, \beta \)

\( \sum\ \text{roots:}\)

\(2+i+2-i+\alpha + \beta\) \(=-\dfrac{b}{a} \)  
\(4+\alpha+\beta\) \(=3\)  
\(\alpha + \beta\) \(=-1\ \ \ …\ (1) \)  

 
\(\text{Product of roots:} \)

\((2+i)(2-i)\alpha\beta \) \(= \dfrac{e}{a} \)  
\(5\alpha\beta\) \(=-30\)  
\(\alpha \beta \) \(=-6\ \ \ …\ (2) \)  

 
\(\text{Substitute}\ \ \beta=-\alpha-1\ \ \text{into (2):} \)

\(\alpha(-\alpha-1) \) \(=-6 \)  
\(-\alpha^2-\alpha \) \(=-6\)  
\(\alpha^2+\alpha-6\) \(=0\)  
\( (\alpha+3)(\alpha-2) \) \(=0\)  

 
\(\therefore\ \text{Remaining zeros:}\ \ -3, 2 \)

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 3, Band 4, smc-1050-30-Roots > 3, smc-1050-35-Conjugate roots

Complex Numbers, EXT2 N2 2022 HSC 13c

Consider the equation  `z^5+1=0`, where `z` is a complex number.

  1. Solve the equation  `z^5+1=0`  by finding the 5th roots of `-1`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Show that if `z` is a solution of  `z^5+1=0`  and  `z !=-1`, then  `u=z+(1)/(z)`  is a solution of  `u^2-u-1=0`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Hence find the exact value of  `cos\ (3pi)/(5)`.  (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `z=e^(i(pi)/5), e^(i(3pi)/5), e^(-i(pi)/5), -1, e^(-i(3pi)/5)`
  2. `text{Proof (See Worked Solutions)}`
  3. `(1-sqrt5)/4`
Show Worked Solution

i.   `z^5+1=0\ \ =>\ \ z^5=-1`

`z=e^(i((2k+1)/5)),\ \ kin{0,1,-1,2,-2}`

`:.z=e^(i(pi)/5), e^(i(3pi)/5), e^(-i(pi)/5), -1, e^(-i(3pi)/5)`
  

ii.   `z^5+1=(z+1)(z^4-z^3+z^2-z+1)`

`text{Given}\ \ z!=-1,`

`z^4-z^3+z^2-z+1=0`
 

`text{Divide by}\ z^2\ \ (z!=0)`

`z^2-z+1-1/z+1/z^2` `=0`  
`z^2+1/z^2-(z+1/z)+1` `=0`  
`z^2+2+1/z^2-(z+1/z)-1` `=0`  
`(z+1/z)^2-(z-1/z)-1` `=0`  

 
`text{Let}\ \ u=z+1/z:`

`:.u^2-u-1=0`
 


Mean mark (ii) 53%.

iii.  `u^2-u-1=0`

`text{By quadratic formula:}`

`u` `=(1+-sqrt(1-4xx1xx(-1)))/(2)`  
  `=(1+-sqrt5)/2`  

♦ Mean mark (iii) 43%.
`z+1/z` `=(1+-sqrt5)/2`  
`e^(i(3pi)/5)+e^(-i(3pi)/5)` `=(1-sqrt5)/2,\ \ (cos\ (3pi)/5 <0)`  
`2cos((3pi)/5)` `=(1-sqrt5)/2`  
`cos((3pi)/5)` `=(1-sqrt5)/4`  

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 3, Band 4, Band 5, smc-1050-10-Quadratic roots, smc-1050-30-Roots > 3

Complex Numbers, EXT2 N2 2021 HSC 13a

Indicate the locations of all of the fourth roots of the complex number  `a + ib`.   (2 marks)

Show Answers Only

Show Worked Solution

`4 \ text{roots:} \ z_1 , z_2 , z_3 , z_4`

♦ Mean mark 47%.

`text{arg}(z_1) = 1/4 text{arg}(a + ib)`

`|z| > 1 \ text{but less than} \ |a + ib|`

`text{Rotations between roots} = pi/2`

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 5, smc-1050-30-Roots > 3

Complex Numbers, EXT2 N2 SM-Bank 1

Find all solutions for `z`, in exponential form, given  `z^4 = -2 sqrt3 - 2 i`.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`sqrt2 e^(-frac{i 17 pi}{24}) \ , \  sqrt2 e^(-frac{i 5 pi}{24}) \ , \  sqrt2 e^(frac{i 7 pi}{24}) \ , \  sqrt2 e^(frac{i 19 pi}{24})`

Show Worked Solution

`text{Convert} \ \ z^4\ \ text{to Mod/Arg:}`

`| z^4 | = sqrt{(2 sqrt3)^2 + 2^2} = 4`
 

 

`tan \ theta` `= frac{2 sqrt3}{2} = sqrt3`
`theta` `= frac{pi}{3}`

`text{arg} (z^4) = – (frac{pi}{2} + frac{pi}{3}) = – frac{5 pi}{6}`
 

`text{By De Moivre:}`

`| z | = root4 (4) = sqrt2`

`text{arg}(z) = -frac{5 pi}{24} + frac{ k pi}{2} \ , \ k = 0 , ± 1 , ± 2`

`k = 0:\ text{arg} (z)=-frac{5 pi}{24}`

`k = 1:\ text{arg} (z)= -frac{5 pi}{24} + frac{pi}{2} = frac{7 pi}{24}`

`k = – 1:\ text{arg} (z)= -frac{5 pi}{24} – frac{pi}{2} = frac{-17 pi}{24}`

`k = 2:\ text{arg} (z)= -frac{5 pi}{24} + pi = frac{19 pi}{24}`

 
`therefore \ text{Solutions are:} \ sqrt2 e^(- frac{i 17 pi}{24}) \ , \  sqrt2 e^(frac{ -i 5 pi}{24}) \ , \  sqrt2 e^(frac{i 7 pi}{24}) \ , \  sqrt2 e^(frac{i 19 pi}{24})`

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 4, smc-1050-30-Roots > 3, smc-1050-50-Exponential form

Complex Numbers, EXT2 N2 EQ-Bank 1

`z = sqrt2 e^((ipi)/15)`  is a root of the equation  `z^5 = alpha(1 + isqrt3), \ alpha ∈ R`.

  1. Express  `1 + isqrt3`  in exponential form.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the value of `alpha`.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the other 4 roots of the equation in exponential form.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2e^((ipi)/3)`
  2. `alpha = 2sqrt2`
  3. `e^((i11pi)/15), e^(-(ipi)/3), e^((i13pi)/15), e^(−(i11pi)/15)`
Show Worked Solution

i.   `beta = 1 + isqrt3`

`|beta| = sqrt(1 + (sqrt3)^2) = 2`

`text(arg)(beta) = tan^(−1) (sqrt3/1) = pi/3`

`beta = 2e^((ipi)/3)`

 

ii.    `z` `= sqrt2 e^((ipi)/15)`
  `z^5` `= (sqrt2 e^((ipi)/15))^5`
    `= (sqrt2)^5 e^((ipi)/15 xx 5)`
    `= 4sqrt2 e^((ipi)/3)`

 
`:. alpha = 2sqrt2`

 

iii.   `text(arg)(z^5) = pi/3 + 2kpi, \ \ k = 0, ±1, ±2, …`

`text(arg)(z) = pi/15 + (2kpi)/5`

`k = 1:\ text(arg)(z) = pi/15 + (2pi)/5 = (11pi)/15`

`k = text(−1):\ text(arg)(z) = pi/15 – (2pi)/5 = −pi/3`

`k = 2:\ text(arg)(z) = pi/15 + (4pi)/5 = (13pi)/15`

`k =text(−2):\ text(arg)(z) = pi/15 – (4pi)/5 = −(11pi)/15`
 

`:. 4\ text(other roots are:)`

`e^((i11pi)/15), e^(−(ipi)/3), e^((i13pi)/15), e^(−(i11pi)/15)` 

Filed Under: Solving Equations with Complex Numbers Tagged With: Band 2, Band 3, Band 4, smc-1050-30-Roots > 3, smc-1050-50-Exponential form

Complex Numbers, EXT2 N2 2018 HSC 6 MC

Which complex number is a 6th root of `i`?

  1. `−1/sqrt2 + 1/sqrt2i`
  2. `−1/sqrt2 - 1/sqrt2i`
  3. `−sqrt2 + sqrt2i`
  4. `−sqrt2 - sqrt2i`
Show Answers Only

`A`

Show Worked Solution

`text(Consider option A:)`
 

`|−1/sqrt2 + 1/sqrt2i|= sqrt((−1/sqrt2)^2 + (1/sqrt2)^2) = 1`

`text(arg)(z)` `= (3pi)/4`
`z` `= 1(cos\ (3pi)/4 + i sin\ (3pi)/4)`
`z^6` `= cos\ (18pi)/4 + i sin\ (18pi)/4\ \ \ text{(De Moivre)}`
  `= i`

 
`=> A`

Filed Under: Powers and Roots, Solving Equations with Complex Numbers Tagged With: Band 4, smc-1050-30-Roots > 3

Complex Numbers, EXT2 N2 2017 HSC 1 MC

The complex number `z` is chosen so that  `1, z, …, z^7`  form the vertices of the regular polygon shown.

Which polynomial equation has all of these complex numbers as roots?

  1. `x^7 - 1 = 0`
  2. `x^7 + 1 = 0`
  3. `x^8 - 1 = 0`
  4. `x^8 + 1 = 0`
Show Answers Only

`C`

Show Worked Solution

`P(x)\ \ text(has 8 separate roots.)`

`:.\ text(Must be of degree at least 8.)`

`text(S) text(ince 1 is also a root,)`

`=>  C`

Filed Under: Geometrical Implications of Complex Numbers, Geometry and Complex Numbers (vectors), Solving Equations with Complex Numbers Tagged With: Band 3, smc-1050-30-Roots > 3, smc-1052-50-Sketch roots

Complex Numbers, EXT2 N2 2009 HSC 2e

  1. Find all the 5th roots of  `–1`  in modulus-argument form.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Sketch the 5th roots of  `–1`  on an Argand diagram.  (1 mark)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `z_1 = text(cis)\ pi/5,\ \ \ z_2 = text(cis) (3 pi)/5,\ \ \ z_3 = text(cis) pi=-1,``z_4 = text(cis) (7 pi)/5,\ \ z_5 = text(cis) (9 pi)/5`
  2.  
Show Worked Solution
i.   `z` `=cos theta+i sin theta`
  `z^5` `=cos\ 5 theta+i sin\ 5 theta=-1,\ \ \ \ text{(De Moivre)}`
  `:. cos\ 5 theta` `=-1`
  `5 theta` `=pi,\ 3pi,\ 5pi,\ 7pi,\ 9pi`
  `theta` `=pi/5,\ (3pi)/5,\ pi,\ (7pi)/5,\ (9pi)/5`

 

`:.\ text(The roots are)`

`z_1 = text(cis)\ pi/5,\ \ \ z_2 = text(cis)\ (3 pi)/5,\ \ \ z_3 = text(cis) pi=-1,`

`z_4 = text(cis)\ (7 pi)/5,\ \ z_5 = text(cis)\ (9 pi)/5`

 

ii.  

Filed Under: Powers and Roots, Solving Equations with Complex Numbers Tagged With: Band 4, smc-1050-30-Roots > 3

Copyright © 2014–2025 SmarterEd.com.au · Log in