Sketch the region of the complex plane defined by \(\abs{z+5-i}>\abs{z-3+3 i}\). (3 marks)
--- 15 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Sketch the region of the complex plane defined by \(\abs{z+5-i}>\abs{z-3+3 i}\). (3 marks)
--- 15 WORK AREA LINES (style=lined) ---
\(\abs{z+5-i}=\abs{z-(-5+i)}\)
\(\abs{z-3+3 i}=\abs{z-(3-3 i)}\)
\(\text{Find equation of} \ \perp \ \text{bisector between}\ \ (-5,1) \ \ \text{and}\ \ (3,-3):\)
\(\text{Midpoint} \equiv \left(\dfrac{-5+3}{2}, \dfrac{1-3}{2}\right) \equiv (-1,-1)\)
\(m=\dfrac{-3-1}{3+5}=-\dfrac{1}{2} \ \Rightarrow \ m_{\perp}=2\)
\(\text{Equation of line} \ \ m=2 \ \ \text{through}\ \ (-1,-1):\)
| \(y+1\) | \(=2(x+1)\) |
| \(y\) | \(=2 x+1\) |
\(\text{Sketch:}\ \abs{z+5-i}>\abs{z-3+3 i}\)
The complex numbers \(w\) and \(z\) both have modulus 1, and \(\dfrac{\pi}{2} \lt \text{Arg} \Big{(}\dfrac{z}{w}\Big{)} \lt \pi\), where \(\text{Arg}\) denotes the principal argument.
For real numbers \(x\) and \(y\), consider the complex number \(\dfrac{xz+yw}{z}\).
On an \(xy\)-plane, clearly sketch the region that contains all points \((x,y)\) for which \(\dfrac{\pi}{2} \lt \text{Arg} \Big{(}\dfrac{xz+yw}{z}\Big{)} \lt \pi\).
\(\text{One strategy:}\)
\(\text{Let}\ \ u=\dfrac{z}{w},\ \text{where}\ \abs{z} = \abs{w} = 1\ \ \Rightarrow \ \ \abs{u}=1. \)
\(\dfrac{\pi}{2} \lt \text{Arg} (u) \lt \pi\ \text{(given)}\ \ \Rightarrow \text{Re}(u) \lt 0\ \ \text{and}\ \ \text{Im}(u) \gt 0 \)
\(\text{Using}\ \ \dfrac{z}{w} = \dfrac{1}{u} = \dfrac{\bar u}{\abs{u}} = \bar u, \)
\(\text{find all real numbers}\ x\ \text{and}\ y\ \text{such that:} \)
\(\dfrac{\pi}{2} \lt \text{Arg} \Big{(}\dfrac{xz+yw}{z}\Big{)} \lt \pi\)
\(\dfrac{\pi}{2} \lt \text{Arg} (x+ \bar y u) \lt \pi\)
\(\text{i.e.}\ \ \text{Re}(x+y \bar u) = x + y \times \text{Re}(u) \lt 0\ \ \text{and}\ \ \text{Im}(y \bar u) \gt 0 \)
\(\therefore y \lt 0\ \ \text{and} \)
\(x \lt -y \times \text{Re}(u) = -y \times \cos (\text{Arg}(u)) = -y \times \cos \Bigg{(}\text{Arg}\Big{(} \dfrac{z}{w} \Big{)} \Bigg{)} \)
\(\text{Region is all real}\ (x,y)\ \text{that lie below the}\ x\text{-axis and to the} \)
\(\text{left of the line}\ \ y=-\sec \Bigg{(}\text{Arg}\Big{(} \dfrac{z}{w} \Big{)} \Bigg{)}x \)
A shaded region on a complex plane is shown.
Which relation best describes the region shaded on the complex plane?
\(D\)
\(\text{By elimination:}\)
\(\text{Let}\ \ z=x+iy \ \ (x,y \in \mathbb{R}) \)
\(\text{Since shaded area is outside the circle, coefficients of}\ x^2\ \text{and} \)
\( y^2\ \text{must be positive (eliminate A and C).}\)
\(\text{Consider option D:}\)
| \(|z-1|\) | \(<2|z-i|\) | |
| \((x-1)^2+y^2\) | \(<4(x^2+(y-1)^2) \) | |
| \(x^2-2x+1+y^2\) | \(<4x^2+4y^2-8y+4\) | |
| \(0\) | \(<3x^2+2x+3y^2-8y+3\) |
\(\text{Circle equation has centre where}\ \ x<0, y>0. \)
\(\Rightarrow D\)
Let `R` be the region in the complex plane defined by `1 < text{Re}(z) <= 3` and `(pi)/(6) <= text{Arg}(z) < (pi)/(3)`.
Which diagram best represents the region `R`?
`A`
`1 < text{Re}(z) <= 3\ \ =>\ \ text{Eliminate}\ B and D`
`(pi)/(6) <= text{Arg}(z) < (pi)/(3)\ \ =>\ \ text{Eliminate}\ C`
`=>A`
Sketch the region of the complex plane defined by `text{Re}(z) ≥ text{Arg}(z)` where `text{Arg}(z)` is the principal argument of `z`. (3 marks)
`text{Find region where} \ \ text{Re}(z) ≥ text{Arg}(z).`
| `x` | `≥ tan^-1 (y/x)` | |
| `x tan (x)` | `≥ y` |
`text(If)\ \ x>=pi/2, \ x>=tan^-1(y/x)\ \ text(as)\ \ tan^-1(y/x)<pi/2`
`text{Arg}(0)\ text(is not defined.)`
`text{In quadrant 2:} \ \ x ≤ 0 \ , \ y ≤ 0 \ , \ pi/2 ≤ text{Arg}(z ) ≤ pi`
`text{Re}(z) < text{Arg}(z ) \ => \ text{no points satisfy}`
`text{In quadrant 3:} \ \ x ≤ 0 \ , \ y ≤ 0 \ , \ -pi ≤ text{Arg}(z) ≤ -pi/2`
| `text{Arg}(z)` | `= -pi + tan^-1 (y/x)` |
| `x` | `≥ -pi + tan^-1 (y/x)` |
| `tan^-1 (y/x)` | `≤ pi + x` |
| `y/x` | `≤ tan (pi + x)` |
| `y` | `≥ xtan (pi + x)` |
`text{In the domain} \ \ -pi/2 <= x <= 0,`
`text{Arg}(z) = -pi+ tan^-1(y/x) < -pi/2\ \ \ (text{s}text{ince}\ \ tan^-1(y/x)<pi/2)`
`=>\ text(all points satisfy for)\ \ \ -pi/2 <= x <= 0`
`text{In quadrant 4:} \ \ x ≥ 0 \ , \ y ≤ 0 \ , \ -pi/2 ≤ text{Arg}(z) ≤ 0`
`text{Re}(z) > text{Arg}(z) \ => \ text{all points satisfy}`
Sketch the region in the complex plane where the inequalities
`| z + overset_z | ≤ 1` and `| z - i | ≤ 1`
hold simultaneously. (3 marks)
`| z + overset_z | ≤ 1 `
| `| x + i y + x – iy |` | `≤ 1` |
| `| 2x |` | `≤ 1` |
| `| x |` | `≤ frac{1}{2}` |
`| z – i | ≤ 1 \ => \ text{Circle, radius = 1 , centre (0, 1)`
Sketch the region on the Argand diagram where the inequalities
`| z - overset_z | < 2` and `| z - 1 | >=1`
hold simultaneously. (3 marks)
Which complex number lies in the region `2 < |z - 1| < 3`?
`D`
Sketch the region in the complex plane where the inequalities `1 ≤ |\ z\ | ≤ 2` and `0 ≤ z + bar z ≤ 3` hold simultaneously. (2 marks)
`text(See Worked Solutions.)`
On an Argand diagram, sketch the region described by the inequality
`|\ 1 + 1/z\ | <= 1.` (2 marks)
| `|\ 1 + 1/z\ |<= ` | `1` |
| `|\ (z + 1)/z\ |<= ` | `1` |
| `|\ z + 1\ |/|\ z\ |<= ` | `1` |
| `|\ z + 1\ |<= ` | `|\ z\ |` |
| `sqrt ((x + 1)^2 + y^2) <=` | `sqrt (x^2 + y^2)` |
| `(x + 1)^2 + y^2 <=` | `x^2 + y^2` |
| `x^2 + 2x + 1 <=` | ` x^2` |
| `:.x <=` | `-1/2` |
Sketch the region in the Argand diagram where `|\ z\ | ≤ |\ z − 2\ |` and `−pi/4 ≤ text(arg)\ z ≤ pi/4`. (3 marks)
`text(See Worked Solutions.)`