For the complex numbers \(z\) and \(w\), it is known that \(\arg \left(\dfrac{z}{w}\right)=-\dfrac{\pi}{2}\).
Find \(\left|\dfrac{z-w}{z+w}\right|\). (2 marks) --- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
For the complex numbers \(z\) and \(w\), it is known that \(\arg \left(\dfrac{z}{w}\right)=-\dfrac{\pi}{2}\).
Find \(\left|\dfrac{z-w}{z+w}\right|\). (2 marks) --- 7 WORK AREA LINES (style=lined) ---
\(\abs{\dfrac{z-w}{z+w}}=1\)
Let \(w\) be the complex number \(z=e^{\small{\dfrac{2i \pi}{3}}} \).
--- 8 WORK AREA LINES (style=lined) ---
The vertices of a triangle can be labelled \(A, B\) and \(C\) in anticlockwise or clockwise direction, as shown.
Three complex numbers \(a, b\) and \(c\) are represented in the complex plane by points \(A, B\) and \(C\) respectively.
--- 8 WORK AREA LINES (style=lined) ---
\(a^2+b^2+c^2=a b+b c+c a .\) (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
i. \(w=e^{\small{\dfrac{2i \pi}{3}}} \)
\(w^2=e^{\small{-\dfrac{2i \pi}{3}}} = \overline w \)
\(\text{Re}(w)=\cos \Big{(}\dfrac{2\pi}{3} \Big{)}=-\dfrac{1}{2} \)
\(1+w+w^2\) | \(=1+w+\overline w \) | |
\(=1+ 2 \times \text{Re}(w) \) | ||
\(=1+2 \times -\dfrac{1}{2} \) | ||
\(=0\) |
ii. \(\text{Rotate}\ \ b-c\ \ \text{anticlockwise by}\ \ \dfrac{2\pi}{3} \)
\(\Rightarrow (b-c)w = c-a\)
\(\therefore bw-cw-c+a = a+bw-c(1+w) = 0 \)
\(\text{Substitute}\ \ 1+w=-w^2\ \ \text{(using part (i))} \)
\(a+bw-c(-w^2) \) | \(=0\) | |
\(a+bw+cw^2\) | \(=0\ \ …\ \text{as required} \) |
iii. \(a+b w^2+c w=0\ \ \text{(if}\ \Delta ABC\ \text{is clockwise – given)} \)
\(a+bw+cw^2=0\ \ \text{(if}\ \Delta ABC\ \text{is anticlockwise)} \)
\(\Rightarrow (a+b w^2+c w)(a+bw+cw^2) = 0\ …\ (1)\)
\(\text{Expand (1) using part (i):}\ \ w+w^2=-1\ \ \text{and}\ \ w^3 = z^3 = 1 \)
\(a^2+abw^2+acw+bwa+b^2w^3+bcw^2+cw^2a+cbw^4+c^2w^3\) | \(=0\) | |
\(a^2+b^2+c^2+ab(w+w^2)+bc(w+w^2)+ca(w+w^2)\) | \(=0\) | |
\(a^2+b^2+c^2+ab(-1)+bc(-1)+ca(-1) \) | \(=0\) |
\(\therefore a^2+b^2+c^2 = ab+bc+ca\ …\ \text{as required} \)
A square in the Argand plane has vertices
`5+5i,quad5-5i,quad-5-5i` and `-5+5i`.
The complex numbers `z_A=5+i, z_B` and `z_C` lie on the square and form the vertices of an equilateral triangle, as shown in the diagram.
Find the exact value of the complex number `z_B`. (4 marks)
`(5-16/sqrt3)+5i`
`z_A=5+i, \ \ z_B=b+5i, \ \ z_C=c-5i`
`z_B-z_A=(b-5)+4i`
`z_C-z_A=(c-5)-6i`
`text{Internal angles of equilateral triangle} = pi/3:`
`=>\ (z_B-z_A)\ text{is an anti-clockwise rotation of}\ (z_C-z_A)\ text{by}\ pi/3`
`e^(i pi/3)(z_B-z_A)=z_C-z_A`
`(1/2+i sqrt3/2)((b-5)+4i)=(c-5)-6i`
`(b-5)/2+2i+((b-5)sqrt3)/2 i-2sqrt3` | `=(c-5)-6i` | |
`(b-5-4sqrt3)/2 + i((4+(b-5)sqrt3)/2)` | `=(c-5)-6i` |
`text{Equating imaginary parts:}`
`(4+(b-5)sqrt3)/2` | `=-6` | |
`(b-5)sqrt3` | `=-16` | |
`b-5` | `=-16/sqrt3` | |
`b` | `=5-16/sqrt3` |
`:.z_B=(5-16/sqrt3)+5i`
Let `z_1` be a complex number and let `z_2 = e^(frac{i pi}{3}) z_1`
The diagram shows points `A` and `B` which represent `z_1` and `z_2`, respectively, in the Argand plane.
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i.
`text{Let}` | `z_1` | `= r(cos theta + i sin theta)` |
`z_2` | `= e^(i frac{pi}{3}) z_1` | |
`= r (cos ( theta + frac{pi}{3} ) + i sin (theta + frac{pi}{3}))` |
`| z_1 | = | z_2 | => OA = OB`
` angle AOB = frac{pi}{3} \ ( z_2 \ text{is a} \ frac{pi}{3} \ text{anti-clockwise rotation of} \ z_1 )`
`=> angle OBA = angle BAO = pi/3\ \ \ text{(angles opposite equal sides)}`
`therefore \ OAB \ text{is equilateral}`
ii. | `z_1` | `= z_2 e^(i frac{pi}{3})` |
`frac{z_1}{z_2}` | `= e^(i frac{pi}{3})` | |
`(frac{z_1}{z_2})^3` | `= e^((3 xx i frac{pi}{3})) \ \ (text{by De Moivre})` | |
`frac{z_1^3}{z_2^3}` | `= e^(i pi)` | |
`z_1^3` | `= -z_2^3` | |
`z_1^3 + z_2^3` | `= 0` |
`(z_1 + z_2)(z_1^2 – z_1 z_2 + z_2^2)` | `= 0` |
`z_1^2 – z_1 z_2 + z_2^2` | `= 0` |
`z_1^2 + z_2^2` | `= z_1 z_2` |
Multiplying a non-zero complex number by `(1 - i)/(1 + i)` results in a rotation about the origin on an Argand diagram.
What is the rotation?
`=> B`
`(1 – i)/(1 + i)` | `= ((1 – i)^2)/((1 + i)(1 – i))` |
`= (−2i)/2` | |
`= −i` |
`:. text(Clockwise rotation by)\ \ pi/2.`
`=> B`