SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, EXT2 N2 2025 HSC 9 MC

The points \(U, V, W\) and \(Z\) represent the complex numbers \(u, v, w\) and \(z\) respectively. It is given that  \(v+z=u+w\)  and  \(u+k i z=w+k i v\)  where  \(k \in \mathbb{R} , k>1\).

Which quadrilateral best describes \(UVWZ\) ?

  1. Parallelogram
  2. Rectangle
  3. Rhombus
  4. Square
Show Answers Only

\(C\)

Show Worked Solution

\(\text{Quadrilateral}\ UVWZ\ \ \Rightarrow\ \ \text{Diagonals are \(UW\) and \(VZ\)} \).

\(\text{Given}\ \ v+z=u+w\ \ \Rightarrow\ \ \dfrac{v+z}{2}=\dfrac{u+w}{2}\)

\(\text{Mid-points of diagonals are equal (diagonals bisect).}\)

\(u+kiz\) \(=w+kiv\)  
\(u-w\) \(=ki(v-z)\)  

\(\therefore UW\ \text{and}\ VZ\ \text{are perpendicular.}\)

\(\Rightarrow C\)

Filed Under: Geometrical Implications of Complex Numbers Tagged With: Band 5, smc-1052-30-Quadrilaterals, smc-1052-55-Rotations

Complex Numbers, EXT2 N2 2025 HSC 11a

The location of the complex number \(z\) is shown on the diagram below.

On the diagram, indicate the locations of  \(\bar{z}\)  and  \(i \bar{z}\).   (2 marks)  
 

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

Show Worked Solution

Filed Under: Geometrical Implications of Complex Numbers Tagged With: Band 3, smc-1052-55-Rotations

Complex Numbers, EXT2 N2 2024 HSC 14c

For the complex numbers \(z\) and \(w\), it is known that  \(\arg \left(\dfrac{z}{w}\right)=-\dfrac{\pi}{2}\).  

Find \(\left|\dfrac{z-w}{z+w}\right|\).   (2 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\abs{\dfrac{z-w}{z+w}}=1\)

Show Worked Solution

\(\arg \left(\dfrac{z}{w}\right)=\arg \, z-\arg \, w=-\dfrac{\pi}{2}\)

\(\text{Graphically, \(\arg \, z\) is a \(90^{\circ}\) anticlockwise rotation from \(\arg \, w\).}\)

♦ Mean mark 49%.

\(\abs{z-w}=\abs{z+w} \ \text{(diagonals of rectangle)}\)

\(\therefore \abs{\dfrac{z-w}{z+w}}=1\)

Filed Under: Geometrical Implications of Complex Numbers Tagged With: Band 5, smc-1052-30-Quadrilaterals, smc-1052-55-Rotations

Complex Numbers, EXT2 N2 2023 HSC 16a

Let \(w\) be the complex number  \(z=e^{\small{\dfrac{2i \pi}{3}}} \).

  1. Show that  \(1+w+w^2=0\).   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

The vertices of a triangle can be labelled \(A, B\) and \(C\) in anticlockwise or clockwise direction, as shown.
 

Three complex numbers \(a, b\) and \(c\) are represented in the complex plane by points \(A, B\) and \(C\) respectively.

  1. Show that if triangle \(A B C\) is anticlockwise and equilateral, then  \(a+b w+c w^2=0\).   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. It can be shown that if triangle \(A B C\) is clockwise and equilateral, then \(a+b w^2+c w=0\). (Do NOT prove this.)
  3. Show that if \(A B C\) is an equilateral triangle, then

\(a^2+b^2+c^2=a b+b c+c a .\)  (2 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(\text{See Worked Solutions}\)
  2. \(\text{See Worked Solutions}\)
  3. \(\text{See Worked Solutions}\)
Show Worked Solution

i.    \(w=e^{\small{\dfrac{2i \pi}{3}}} \)

\(w^2=e^{\small{-\dfrac{2i \pi}{3}}} = \overline w \)

\(\text{Re}(w)=\cos \Big{(}\dfrac{2\pi}{3} \Big{)}=-\dfrac{1}{2} \)

\(1+w+w^2\) \(=1+w+\overline w \)  
  \(=1+ 2 \times \text{Re}(w) \)  
  \(=1+2 \times -\dfrac{1}{2} \)  
  \(=0\)  

 
ii.
    \(\text{Rotate}\ \ b-c\ \ \text{anticlockwise by}\ \ \dfrac{2\pi}{3} \)

\(\Rightarrow (b-c)w = c-a\)

\(\therefore bw-cw-c+a = a+bw-c(1+w) = 0 \)

\(\text{Substitute}\ \ 1+w=-w^2\ \ \text{(using part (i))} \)

\(a+bw-c(-w^2) \) \(=0\)  
\(a+bw+cw^2\) \(=0\ \ …\ \text{as required} \)  
♦♦♦ Mean mark (ii) 18%.

iii.   \(a+b w^2+c w=0\ \ \text{(if}\ \Delta ABC\ \text{is clockwise – given)} \)

\(a+bw+cw^2=0\ \ \text{(if}\ \Delta ABC\ \text{is anticlockwise)} \)

\(\Rightarrow (a+b w^2+c w)(a+bw+cw^2) = 0\ …\ (1)\)
 

\(\text{Expand (1) using part (i):}\ \ w+w^2=-1\ \ \text{and}\ \ w^3 = z^3 = 1 \)

\(a^2+abw^2+acw+bwa+b^2w^3+bcw^2+cw^2a+cbw^4+c^2w^3\) \(=0\)  
\(a^2+b^2+c^2+ab(w+w^2)+bc(w+w^2)+ca(w+w^2)\) \(=0\)  
\(a^2+b^2+c^2+ab(-1)+bc(-1)+ca(-1) \) \(=0\)  

 
\(\therefore a^2+b^2+c^2 = ab+bc+ca\ …\ \text{as required} \)

♦♦♦ Mean mark (iii) 11%.

Filed Under: Geometrical Implications of Complex Numbers Tagged With: Band 3, Band 6, smc-1052-20-Triangles, smc-1052-55-Rotations, smc-1052-70-Vectors

Complex Numbers, EXT2 N2 2022 HSC 16a

A square in the Argand plane has vertices

        `5+5i,quad5-5i,quad-5-5i`  and  `-5+5i`.

The complex numbers `z_A=5+i, z_B` and `z_C` lie on the square and form the vertices of an equilateral triangle, as shown in the diagram.
 
 
                 
 
Find the exact value of the complex number `z_B`.  (4 marks)

Show Answers Only

`(5-16/sqrt3)+5i`

Show Worked Solution

`z_A=5+i, \ \ z_B=b+5i, \ \ z_C=c-5i`

`z_B-z_A=(b-5)+4i`

`z_C-z_A=(c-5)-6i`
 


♦♦♦ Mean mark 21%.

`text{Internal angles of equilateral triangle} = pi/3:`

`=>\ (z_B-z_A)\ text{is an anti-clockwise rotation of}\ (z_C-z_A)\ text{by}\ pi/3`
 

`e^(i pi/3)(z_B-z_A)=z_C-z_A`

`(1/2+i sqrt3/2)((b-5)+4i)=(c-5)-6i`

`(b-5)/2+2i+((b-5)sqrt3)/2 i-2sqrt3` `=(c-5)-6i`  
`(b-5-4sqrt3)/2 + i((4+(b-5)sqrt3)/2)` `=(c-5)-6i`  

 
`text{Equating imaginary parts:}`

`(4+(b-5)sqrt3)/2` `=-6`  
`(b-5)sqrt3` `=-16`  
`b-5` `=-16/sqrt3`  
`b` `=5-16/sqrt3`  

 
`:.z_B=(5-16/sqrt3)+5i`

Filed Under: Geometrical Implications of Complex Numbers Tagged With: Band 6, smc-1052-55-Rotations

Complex Numbers, EXT2 N2 EQ-Bank 1 MC

The Argand diagram shows the complex number `e^(i theta)`.
 

Which of the following could be the complex number `i e^(-i theta)`?

    

 

 

 

Show Answers Only

`B`

Show Worked Solution

`e^(i theta) = cos theta + i sin theta`

`e^(-i theta) = cos (-theta) + i sin (-theta) = cos theta-i sin theta\ \ \ text{(conjugate)}`

`e^(i theta) \ => \ P^{′}`

`ie^(-i theta) \ => \ text(Rotate)\ e^(-i theta)\ (P^{′})\ text(90° anticlockwise.)`

`=> B`

Filed Under: Geometrical Implications of Complex Numbers Tagged With: Band 3, smc-1052-55-Rotations

Complex Numbers, EXT2 N2 2020 HSC 14a

Let `z_1` be a complex number and let  `z_2 = e^(frac{i pi}{3}) z_1`

The diagram shows points `A` and `B` which represent `z_1` and `z_2`, respectively, in the Argand plane.
 


 

  1. Explain why triangle  `OAB`  is an equilateral triangle.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Prove that  `z_1 ^2 + z_2^2 = z_1 z_2`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{See Worked Solutions}`
  2. `text{See Worked Solutions}`
Show Worked Solution

i.

 

`text{Let}`     `z_1` `= r(cos theta + i sin theta)`
  `z_2` `= e^(i frac{pi}{3}) z_1`
    `= r (cos ( theta + frac{pi}{3} ) + i sin (theta + frac{pi}{3}))`

 

`| z_1 | = | z_2 | => OA = OB`

` angle AOB = frac{pi}{3} \ ( z_2 \ text{is a} \ frac{pi}{3} \ text{anti-clockwise rotation of} \ z_1 )`

`=> angle OBA = angle BAO = pi/3\ \ \ text{(angles opposite equal sides)}`

`therefore \ OAB \ text{is equilateral}`

 

ii.     `z_1` `= z_2 e^(i frac{pi}{3})`
  `frac{z_1}{z_2}` `= e^(i frac{pi}{3})`
  `(frac{z_1}{z_2})^3` `= e^((3 xx i frac{pi}{3})) \ \ (text{by De Moivre})`
  `frac{z_1^3}{z_2^3}` `= e^(i pi)`
  `z_1^3` `= -z_2^3`
  `z_1^3 + z_2^3` `= 0`

COMMENT: The identity to prove suggests the addition of 2 cubes is a possible strategy.
`(z_1 + z_2)(z_1^2 – z_1 z_2 + z_2^2)` `= 0`
`z_1^2 – z_1 z_2 + z_2^2` `= 0`
`z_1^2 + z_2^2` `= z_1 z_2`

Filed Under: Geometrical Implications of Complex Numbers, Solving Equations with Complex Numbers Tagged With: Band 3, Band 4, smc-1050-40-De Moivre and trig identities, smc-1050-50-Exponential form, smc-1052-20-Triangles, smc-1052-55-Rotations

Complex Numbers, EXT2 N2 2016 HSC 5 MC

Multiplying a non-zero complex number by  `(1 - i)/(1 + i)`  results in a rotation about the origin on an Argand diagram.

What is the rotation?

  1. Clockwise by  `pi/4`
  2. Clockwise by  `pi/2`
  3. Anticlockwise by  `pi/4`
  4. Anticlockwise by  `pi/2`
Show Answers Only

`=> B`

Show Worked Solution
`(1 – i)/(1 + i)` `= ((1 – i)^2)/((1 + i)(1 – i))`
  `= (−2i)/2`
  `= −i`

 
`:. text(Clockwise rotation by)\ \ pi/2.`

`=> B`

Filed Under: Geometrical Implications of Complex Numbers, Geometry and Complex Numbers (vectors) Tagged With: Band 4, smc-1052-55-Rotations

Copyright © 2014–2025 SmarterEd.com.au · Log in