Find \({\displaystyle \int_0^2 \frac{5 x-3}{(x+1)(x-3)}\ dx}\). (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find \({\displaystyle \int_0^2 \frac{5 x-3}{(x+1)(x-3)}\ dx}\). (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(-\ln3 \)
\( \text{Let}\ \ \dfrac{5x-3}{(x+1)(x-3)} = \dfrac{A}{x+1}+\dfrac{B}{x-3}\ \ \ \text{for}\ \ A, B \in \mathbb{R} \)
\(\dfrac{5x-3}{(x+1)(x-3)}\) | \(=\dfrac{A}{x+1}+\dfrac{B}{x-3} \) | |
\(=\dfrac{A(x-3)+B(x+1)}{(x+1)(x-3)} \) |
\(\text{Equating numerators:}\)
\( A(x-3)+B(x+1)=5x-3 \)
\(\text{When}\ \ x=3, 4B=12\ \Rightarrow \ B=3 \)
\(\text{When}\ \ x=-1, -4A=-8\ \Rightarrow \ A=2 \)
\({\displaystyle \int_0^2 \frac{5 x-3}{(x+1)(x-3)}\ dx}\) | \( =\displaystyle \int_0^2 \dfrac{2}{x+1}+\dfrac{3}{x-3}\ dx \) | |
\(= \Big{[} 2\ln|x+1|+3\ln|x-3| \Big{]}_0^2 \) | ||
\(= 2\ln3+3\ln1-2\ln1-3\ln3 \) | ||
\(=-\ln3 \) |
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `(5x)/(x^2-x-6) ≡ (a(x+2) +b(x-3))/((x-3)(x+2))`
`text(Equating numerators:)`
`5x` | `=ax+2a+bx-3b` | |
`5x` | `=(a+b)x+2a-3b` |
`a+b` | `=5\ \ …\ (1)` | |
`2a-3b` | `=0\ …\ (2)` |
`(1) xx 2 – (2)`
`5b` | `=10` |
`b` | `= 2` |
`a` | `=3` |
ii. | `int (5x)/(x^2-x-6)\ dx` | `=int 3/(x-3)\ dx + int 2/(x+2)\ dx` |
`=3 log_e | x-3 | + 2 log_e | x+2 |+C` |
Find `int 6/(x^2-9) dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`ln |\ (x-3)/(x + 3)\ |+ c`
`text(Using partial fractions):`
`6/(x^2-9)` | `= 6/((x + 3)(x-3))` |
`= A/(x + 3) + B/(x-3)` |
`:. A(x-3) + B(x + 3) = 6`
`text(When)\ \ x = 3,\ 6B = 6 \ => \ B = 1`
`text(When)\ \ x = -3,\ -6A = 6 \ => \ A = -1`
`int 6/(x^2-9)\ dx` | `= int (-1)/(x + 3) + 1/(x-3)\ dx` |
`= -ln|\ x + 3\ | + ln |\ x-3\ | + C` | |
`= ln |\ (x-3)/(x + 3)\ | + C` |
Evaluate `int_2^5 (x-6)/(x^2 + 3x-4)\ dx.` (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2 ln (3/4)`
`text(Using partial fractions:)`
`(x-6)/(x^2 + 3x-4)` | `=(x-6)/((x+4)(x-1))` |
`= A/(x+4) + B/(x-1)` | |
`:. x-6` | `=A(x-1)+B(x+4)` |
`text(When)\ \ x=1,\ \ 5B=-5\ =>B=-1`
`text(When)\ \ x=-4,\ \ -5A=-10\ =>A=2`
`:. int_2^5 (x-6)/(x^2 + 3x-4)\ dx` | `= int_2^5 2/(x+4)\ dx-int_2^5 (dx)/(x-1)` |
`= [2 ln (x+4)]_2^5 -[ln(x-1)]_2^5` | |
`= 2(ln 9-ln 6)-(ln4-ln1)` | |
`= 2ln(3/2)-ln4` | |
`= 2ln(3/2)-2ln2` | |
`= 2ln(3/4)` |
Show that `int (dy)/(y(1 − y)) = ln (y/(1 − y)) + c`
for some constant `c`, where `0 < y < 1`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text(Solution 1)`
`d/(dy)[ln(y/(1 − y)) + c]` | `= d/(dy)[ln y − ln(1 − y) + c]` |
`= 1/y − (-1)/(1 − y) + 0` | |
`= (1 − y + y)/(y(1 − y))` | |
`= 1/(y(1 − y))` |
`text(Solution 2)`
`text(Using partial fractions:)`
`1/(y(1 − y))=` | `A/y+B/(1-y)` |
`=> A(y-1)+By=1`
`text(When)\ \ y=1,\ B=1`
`text(When)\ \ y=0,\ A=1`
`:.int (dy)/(y(1 − y))` | `= int (1/y + 1/(1 − y))\ dy` | |
`= ln y − ln(1 − y) + c` | ||
`= ln(y/(1 − y)) + c,\ \ \ \ \ y/(1 − y) > 0\ \ text(for)\ \ 0 < y < 1.` |
Let `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`
`text(When)\ \ x = 1,\ \ u = 3`
`text(When)\ \ x = 3,\ \ u = 1`
`I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx` |
`=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)` | |
`=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du` | |
`=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du` |
ii. `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`
`text(We can add the integrals such that)`
`2I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx` |
`=int_1^3 1/(x(4-x)) dx` |
`text(Using partial fractions:)`
`1/(x(4-x))` | `=A/x+B/(4-x)` |
`1` | `=A(4-x)+Bx` |
`text(When)\ \ x=0,\ \ A=1/4`
`text(When)\ \ x=0,\ \ B=1/4`
`2I` | `=1/4 int_1^3 (1/x + 1/(4-x))\ dx` |
`=1/4 [log_e x-log_e (4-x)]_1^3` | |
`=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]` | |
`=1/2 log_e 3` | |
`:.I` | `=1/4 log_e 3` |