Find \(\displaystyle \int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)} \, dx\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find \(\displaystyle \int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)} \, dx\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(2\, \tan ^{-1} x-\ln \abs{4-x}+C\)
\(\dfrac{x^2-2 x+9}{(4-x)\left(x^2+1\right)}=\dfrac{A}{(4-x)}+\dfrac{B x+C}{x^2+1}\)
\(A\left(x^2+1\right)+(B x+C)(4-x)=x^2-2 x+9\)
\(\text{If}\ \ x=4:\)
\(17 A=16-8+9=17 \ \ \Rightarrow\ \ A=1\)
\(\text{If}\ \ x=0:\)
\(1+c \times 4=9 \ \ \Rightarrow\ \ C=2\)
\(\text{If}\ \ x=1:\)
\(2+3 B+6=8 \ \ \Rightarrow\ \ B=0\)
| \(\displaystyle\int \frac{x^2-2 x+9}{(4-x)\left(x^2+1\right)}\, d x\) | \(=\displaystyle\int \frac{1}{4-x}\, d x+\int \frac{2}{x^2+1}\, d x\) |
| \(=2\, \tan ^{-1} x-\ln \abs{4-x}+C\) |
Use partial fractions to find \(\displaystyle \int \frac{3 x^2+2 x+1}{(x-1)\left(x^2+1\right)}\, d x\) (3 marks) --- 8 WORK AREA LINES (style=lined) --- \(I=3 \ln \abs{x-1}+2 \tan ^{-1}(x)+c\) \(\displaystyle\int \dfrac{3 x^2+2 x+1}{(x-1)\left(x^2+1\right)}\, d x\) \(\dfrac{3 x^2+2 x+1}{(x-1)\left(x^2+1\right)}=\dfrac{A}{(x-1)}+\dfrac{B x+C}{x^2+1}\) \(3+2+1=2 A \ \Rightarrow \ A=3\) \(A+B=3 \quad \quad \ \Rightarrow \ B=0\) \(A-C=1 \quad \quad \ \Rightarrow \ C=2\)
\(3 x^2+2 x+1\)
\(=A\left(x^2+1\right)+(x-1)(B x+C)\)
\(=A x^2+A+B x^2+C x-B x-C\)
\(=(A+B) x^2+(C-B) x+A-C\)
\(\text {If } x=1:\)
\(\therefore I\)
\(=\displaystyle \int \frac{3}{x-1}+\frac{2}{x^2+1}\, d x\)
\(=3 \ln \abs{x-1}+2 \tan ^{-1}(x)+c\)
Find `int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
`3ln |x|+2tan^(-1)((x)/(2))+c`
`text{Using partial fractions:}`
| `(3x^(2)+4x+12)/(x(x^(2)+4))` | `-=(A)/(x)+(Bx+C)/(x^(2)+4)` | |
| `3x^(2)+4x+12` | `=A(x^(2)+4)+x(Bx+C)` | |
| `3x^(2)+4x+12` | `=(A+B)x^(2)+Cx+4A` |
`4A=12\ \ =>\ \ A=3`
`C=4`
`A+B=3\ \ =>\ \ B=0`
| `:.\int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx` | `=int(3)/(x)+(4)/(4+x^(2))\ dx` | |
| `=3ln |x|+2tan^(-1)((x)/(2))+c` |
Find \({\displaystyle \int_0^2 \frac{5 x-3}{(x+1)(x-3)}\ dx}\). (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(-\ln3 \)
\( \text{Let}\ \ \dfrac{5x-3}{(x+1)(x-3)} = \dfrac{A}{x+1}+\dfrac{B}{x-3}\ \ \ \text{for}\ \ A, B \in \mathbb{R} \)
| \(\dfrac{5x-3}{(x+1)(x-3)}\) | \(=\dfrac{A}{x+1}+\dfrac{B}{x-3} \) | |
| \(=\dfrac{A(x-3)+B(x+1)}{(x+1)(x-3)} \) |
\(\text{Equating numerators:}\)
\( A(x-3)+B(x+1)=5x-3 \)
\(\text{When}\ \ x=3, 4B=12\ \Rightarrow \ B=3 \)
\(\text{When}\ \ x=-1, -4A=-8\ \Rightarrow \ A=2 \)
| \({\displaystyle \int_0^2 \frac{5 x-3}{(x+1)(x-3)}\ dx}\) | \( =\displaystyle \int_0^2 \dfrac{2}{x+1}+\dfrac{3}{x-3}\ dx \) | |
| \(= \Big{[} 2\ln|x+1|+3\ln|x-3| \Big{]}_0^2 \) | ||
| \(= 2\ln3+3\ln1-2\ln1-3\ln3 \) | ||
| \(=-\ln3 \) |
Using partial fractions, evaluate `int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`, giving your answer in the form `(1)/(2)ln((f(n))/(8(n-1)^(2)))`, where `f(n)` is a function of `n`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/2ln((4+n^2)/(8(1-n^2)))`
| `(4+x)/((1-x)(4+x^(2)))` | `≡ A/(1-x) + (Bx+C)/(4+x^2)` | |
| `4+x` | `≡A(4+x^2)+(Bx+C)(1-x)` |
`text{If}\ \ x=1, \ 5=5A\ \ =>\ \ A=1`
| `(4+x)` | `≡ 4+x^2+Bx-Bx^2+C-Cx` | |
| `4+x` | `≡ (1-B)x^2+(B-C)x+C+4` |
`=>\ B=1, \ C=0`
`:.int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`
`=int_2^n 1/(1-x) +x/(4+x^2)\ dx`
`=[-ln abs(1-x)+1/2ln(4+x^2)]_2^n`
`=-ln abs(1-n)+1/2ln(4+n^2)+lnabs(1-2)-1/2ln(4+2^2)`
`=-1/2ln(1-n)^2+1/2ln(4+n^2)-1/2ln(8)`
`=1/2ln((4+n^2)/(8(1-n^2)))`
Express `{3x^2-5}/{(x-2)(x^2 + x + 1)}` as a sum of partial fractions over `RR`. (3 marks)
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {A}/{(x-2)} + {B x + C}/{(x^2 + x + 1)}`
`A (x^2 + x + 1) + (Bx + C)(x-2) ≡ 3x^2-5`
`text{If} \ \ x = 2,`
`7A = 7 \ => \ A = 1`
`text{If} \ \ x = 0,`
`1-2C=-5 \ => \ C = 3`
`text(Equating coefficients:)`
`x^2 + x + 1 + Bx^2-2Bx + 3x -6 \ ≡ \ 3x^2 -5`
`(B + 1) x^2 + (4 -2B) x -5 \ ≡ \ 3x^2-5`
`=> B = 2`
`:. \ {3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
Using partial fractions, show that
`int_0^(1/2) 8/(1-x^4)\ dx = log_e 9-4 tan^(−1) (1/2)` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Using partial fractions:)`
`8/(1-x^4) = A/(1-x^2) + B/(1 + x^2)`
| `A(1 + x^2) + B(1-x^2)` | `= 8` |
| `A + B + (A-B)x^2` | `= 8` |
| `A + B` | ` = 8\ \ …\ (1)` |
| `A-B` | ` = 0\ \ …\ (2)` |
`A = 4, \ B = 4`
`4/(1-x^2) = A/(1-x) + B/(1 + x)`
| `A(1 + x) + B(1-x)` | `= 4` |
| `A + B + (A-B)x` | `= 4` |
| `A + B` | `= 4\ \ …\ (1)` |
| `A-B` | `= 0\ \ …\ (2)` |
`A = 2, B = 2`
| `int_0^(1/2) 8/(1-x^4)\ dx` | `= int_0^(1/2) 2/(1-x) + 2/(1 + x) + 4/(1 + x^2)\ dx` |
| `= [−2ln |1-x| + 2ln |1 + x| + 4tan^(−1)x]_0^(1/2)` | |
| `= [2ln |(1 + x)/(1-x)| + 4tan^(−1)x]_0^(1/2)` | |
| `= 2ln |(1 1/2)/(1/2)| + 4tan^(−1)(1/2)-(2ln1 + 4tan^(−1) 0)` | |
| `= 2ln3 + 4tan^(−1)(1/2)` | |
| `= ln9 + 4tan^(−1)(1/2)` |
Find `int 6/(x^2-9) dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`ln |\ (x-3)/(x + 3)\ |+ c`
`text(Using partial fractions):`
| `6/(x^2-9)` | `= 6/((x + 3)(x-3))` |
| `= A/(x + 3) + B/(x-3)` |
`:. A(x-3) + B(x + 3) = 6`
`text(When)\ \ x = 3,\ 6B = 6 \ => \ B = 1`
`text(When)\ \ x = -3,\ -6A = 6 \ => \ A = -1`
| `int 6/(x^2-9)\ dx` | `= int (-1)/(x + 3) + 1/(x-3)\ dx` |
| `= -ln|\ x + 3\ | + ln |\ x-3\ | + C` | |
| `= ln |\ (x-3)/(x + 3)\ | + C` |
Evaluate `int_2^5 (x-6)/(x^2 + 3x-4)\ dx.` (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2 ln (3/4)`
`text(Using partial fractions:)`
| `(x-6)/(x^2 + 3x-4)` | `=(x-6)/((x+4)(x-1))` |
| `= A/(x+4) + B/(x-1)` | |
| `:. x-6` | `=A(x-1)+B(x+4)` |
`text(When)\ \ x=1,\ \ 5B=-5\ =>B=-1`
`text(When)\ \ x=-4,\ \ -5A=-10\ =>A=2`
| `:. int_2^5 (x-6)/(x^2 + 3x-4)\ dx` | `= int_2^5 2/(x+4)\ dx-int_2^5 (dx)/(x-1)` |
| `= [2 ln (x+4)]_2^5 -[ln(x-1)]_2^5` | |
| `= 2(ln 9-ln 6)-(ln4-ln1)` | |
| `= 2ln(3/2)-ln4` | |
| `= 2ln(3/2)-2ln2` | |
| `= 2ln(3/4)` |
Show that `int (dy)/(y(1 − y)) = ln (y/(1 − y)) + c`
for some constant `c`, where `0 < y < 1`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text(Solution 1)`
| `d/(dy)[ln(y/(1 − y)) + c]` | `= d/(dy)[ln y − ln(1 − y) + c]` |
| `= 1/y − (-1)/(1 − y) + 0` | |
| `= (1 − y + y)/(y(1 − y))` | |
| `= 1/(y(1 − y))` |
`text(Solution 2)`
`text(Using partial fractions:)`
| `1/(y(1 − y))=` | `A/y+B/(1-y)` |
`=> A(y-1)+By=1`
`text(When)\ \ y=1,\ B=1`
`text(When)\ \ y=0,\ A=1`
| `:.int (dy)/(y(1 − y))` | `= int (1/y + 1/(1 − y))\ dy` | |
| `= ln y − ln(1 − y) + c` | ||
| `= ln(y/(1 − y)) + c,\ \ \ \ \ y/(1 − y) > 0\ \ text(for)\ \ 0 < y < 1.` |
Find `int 1/(x(x^2 + 1))\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`ln\ |\ x\ | + 1/2ln\ (x^2 + 1) + c`
`text(Using partial fractions:)`
| `1/(x(x^2 + 1)) =` | `a/x + (bx + c)/(x^2 + 1)` |
| `1=` | `a(x^2+1)+x(bx+c)` |
| `1=` | `(a + b)x^2 + cx + a` |
| `:.c = 0, \ \ a = 1,\ \ b = -1` | |
| `:.int 1/(x(x^2 + 1))\ dx` | `=int(1/x − x/(x^2 + 1))\ dx` |
| `=ln\ |\ x\ |-1/2ln\ (x^2 + 1) + c` |
Let `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`
`text(When)\ \ x = 1,\ \ u = 3`
`text(When)\ \ x = 3,\ \ u = 1`
| `I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx` |
| `=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)` | |
| `=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du` | |
| `=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du` |
ii. `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`
`text(We can add the integrals such that)`
| `2I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx` |
| `=int_1^3 1/(x(4-x)) dx` |
`text(Using partial fractions:)`
| `1/(x(4-x))` | `=A/x+B/(4-x)` |
| `1` | `=A(4-x)+Bx` |
`text(When)\ \ x=0,\ \ A=1/4`
`text(When)\ \ x=0,\ \ B=1/4`
| `2I` | `=1/4 int_1^3 (1/x + 1/(4-x))\ dx` |
| `=1/4 [log_e x-log_e (4-x)]_1^3` | |
| `=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]` | |
| `=1/2 log_e 3` | |
| `:.I` | `=1/4 log_e 3` |