SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2 M1 2020 HSC 12b

A particle is projected from the origin with initial velocity `u` m/s at an angle  `theta`  to the horizontal. The particle lands at  `x = R`  on the `x`-axis. The acceleration vector is given by  `underset~a = ((0),(-g))`, where `g` is the acceleration due to gravity. (Do NOT prove this.)
 

  1. Show that the position vector  `underset~r (t)`  of the particle is given by
     
         `underset~r (t) = ((ut  cos theta),(ut  sin theta-frac{1}{2} g t^2))`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Show that the Cartesian equation of the path of flights is given by
     
         `y = frac{-gx^2}{2u^2} (tan^2 theta-frac{2u^2}{gx} tan theta + 1)`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Given  `u^2 > gR`, prove that there are 2 distinct values of  `theta`  for which the particle will land at  `x = R`.   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{See Worked Solutions}`
  2. `text{See Worked Solutions}`
  3. `text{See Worked Solutions}`
Show Worked Solution

i.    `underset~a = ((0),(-g))`

`ddotx = 0`

`dotx = int ddotx \ dt = c`
 
`text{When} \ \ t = 0, \ dotx = u  cos theta \ =>  \ c = u  cos theta`

`=> dotx = u  cos theta`

 
`x = int dotx \ dt =u t cos theta + c`

`text{When} \ \ t = 0 , \ x = 0, \ c = 0`

`therefore \ x = ut  cos theta`
 

`ddoty = -g`

`doty = int-g \ dt = -g t + c`

`text{When} \ \ t = 0 , \ doty = u  sin theta`

`=> doty = u  sin theta-g t`
 

`y = int doty \ dt = ut  sin theta-frac {1}{2} g t^2 + c`

`text{When} \ \ t = 0, \ y = 0  \ => \ c = 0`

`therefore  y = ut  sin theta-frac(1)(2) g t^2`

`:. underset~r = ((x),(y)) = ((ut  cos theta),(ut sin theta-frac{1}{2} g t^2))`
 

ii.   `x = ut \ cos theta`

`t = frac{x}{u \ cos theta}`
 
`text{Substitute into} \ y:`

`y` `= u * frac{x}{u \ cos theta}\ sin theta-frac{1}{2} g ( frac{x}{u \ cos theta} )^2`
  `= x tan theta-frac{gx^2}{2 u^2 cos^2 theta}`
  `= frac{-gx^2}{2u^2} ( frac{1}{cos^2 theta}-frac{2u^2}{gx} tan theta )`
  `= frac{-gx^2}{2u^2} ( sec^2 theta-frac{2u^2}{gx} tan theta )`
  `= frac{-gx^2}{2u^2} ( tan^2 theta-frac{2u^2}{gx} tan theta + 1 )`

 

iii.    `text{When} \ \ x = R \ , \ y = 0`

Mean mark part (iii) 52%.
`frac{-gR^2}{2 u^2}` `( tan^2 theta-frac{2u^2}{gR} tan theta + 1 ) = 0`
   `tan^2 theta-frac{2u^2}{gR} tan theta + 1 = 0`
 
`Delta`
 
`= ( frac{-2u^2}{gR} )^2-4 * 1 * 1`
  `= frac{4u^4}{g^2 R^2}-4`

 

  `u^2` `> gR\ \ \ text{(given)}`
  `u^4` `> g^2 R^2`
  `frac{u^4}{g^2 R^2}` `> 1`
  `frac{4u^4}{g^2 R^2}` `> 4`
  `frac{4u^4}{g^2 R^2}-4` `> 0`
  `Delta` `> 0`

 
`therefore \ 2 \ text{distinct values of} \ \ theta\  \ text{satisfy} \ \ x = R.`

Filed Under: Projectile Motion Tagged With: Band 3, Band 4, smc-1062-40-Initial Angle/Speed, smc-1062-80-Cartesian

Mechanics, EXT2* M1 2007 HSC 7b

A small paintball is fired from the origin with initial velocity `14` metres per second towards an eight-metre high barrier. The origin is at ground level, `10` metres from the base of the barrier.

The equations of motion are

`x = 14t\ cos\ theta`

`y = 14t\ sin\ theta – 4.9t^2`

where  `theta`  is the angle to the horizontal at which the paintball is fired and  `t`  is the time in seconds. (Do NOT prove these equations of motion)
 

  1. Show that the equation of trajectory of the paintball is
     
         `y = mx − ((1 + m^2)/40)x^2`, where  `m = tan\ theta`.  (2 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Show that the paintball hits the barrier at height  `h`  metres when
     
         `m = 2 ± sqrt(3 − 0.4h)`.

     

    Hence determine the maximum value of  `h`.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. There is a large hole in the barrier. The bottom of the hole is `3.9` metres above the ground and the top of the hole is `5.9` metres above the ground. The paintball passes through the hole if  `m`  is in one of two intervals. One interval is  `2.8 ≤ m ≤ 3.2`.

     

    Find the other interval.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. Show that, if the paintball passes through the hole, the range is 
     
         `(40m)/(1 + m^2)\ \ text(metres.)`
     
    Hence find the widths of the two intervals in which the paintball can land at ground level on the other side of the barrier.  (3 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
  3. `0.8 ≤ m ≤ 1.2`
  4. `text{1.3 m  (to 1 d.p.)  and  0.5 m  (to 1 d.p.)}`
Show Worked Solution
i.    `x` `= 14t\ cos\ theta` `\ \ …\ (1)`
  `y` `= 14t\ sin\ theta-4.9t^2` `\ \ …\ (2)`

 

`text(Substitute)\ \ t = x/(14\ cos\ theta)\ \ text{from (1) into (2)}`

`y` `= 14(x/(14\ cos\ theta))\ sin\ theta − 4.9(x/(14\ cos\ theta))^2`
  `= x\ tan\ theta − (4.9/(14^2))((x^2)/(cos^2\ theta))`
  `= x\ tan\ theta − (x^2)/40\ sec^2\ theta`
  `= x\ tan\ theta − (x^2)/40(1 + tan^2\ theta)`
  `= mx − ((1 + m^2)/40)x^2\ \ \ \ \ (text(Given)\ \ m = tan\ theta)`

 

ii.  `text(Show paintball hits at)\ \ h\ \ text(when)`

`m = 2 ± sqrt(3 − 0.4h)`

`text(i.e.)\ \ y = h\ \ text(when)\ \ x = 10`

`10m − ((1 + m^2)/40) · 10^2` `= h`
`10m − 5/2(1 + m^2)` `= h`
`20m − 5 − 5m^2` `= 2h`
`5m^2 − 20m + 2h + 5` `= 0`

 

`text(Using the quadratic formula)`

`m` `=(20 ± sqrt((-20)^2 − 4 · 5 · (2h + 5)))/(2 · 5)`
  `= (20 ± sqrt(400 − 40h −100))/10`
  `= (20 ± sqrt(300 − 40h))/10`
  `= (20 ± 10sqrt(3 − 0.4h))/10`
  `= 2 ± sqrt(3 − 0.4h)\ \ \ text(… as required)`

 

`text(Find maximum)\ \ h`

`sqrt(3 − 0.4h)` `≥ 0`
`3 − 0.4h` `≥ 0`
`0.4h` `≤ 3`
`h` `≤ 7.5`

 

`:.\ text(Maximum)\ \ h = 7.5\ text(m)`

 

iii.   EXT1 2007 7bi

`text{Using part (ii)}`

`text(When)\ \ h = 3.9`

`m` `= 2 ± sqrt(3 − 0.4(3.9))`
  `= 2 ± sqrt(1.44)`
  `= 2 ± 1.2`
  `= 3.2\ \ text(or)\ \ 0.8`

 

`text(When)\ \ h = 5.9`

`m` `= 2 ± sqrt(3 − 0.4(5.9))`
  `= 2 ± sqrt(0.64)`
  `= 2 ± 0.8`
  `= 2.8\ \ text(or)\ \ 1.2`

 

`:.\ text(The other interval is)\ \ \ 0.8 ≤ m ≤ 1.2`

 

iv.  `text(Find)\ \ x\ \ text(when)\ \ y = 0`

`mx − ((1 + m^2)/40)x^2` `= 0`
`x[m − ((1 + m^2)/40)x]` `= 0`
`((1 + m^2)/40)x` `= m,\ \  \ \ x ≠ 0`
`:. x` `= (40m)/(1 + m^2)\ \ …\ text(as required)`

 

`text(Consider the interval)\ \ \ 2.8 ≤ m ≤ 3.2`

`text(When)\ \ m = 2.8`

`=> x = (40(2.8))/(1 + 2.8^2) = 12.669…\ text(m)`

`text(When)\ \ m = 3.2`

`=>x = (40(3.2))/(1 + 3.2^2) = 11.387…\ text(m)`

 

`:.\ text(Landing width interval)`

`= 12.669… − 11.387…`

`= 1.281…`

`= 1.3\ text(m)\ \ text{to 1 d.p.}`

 

`text(Consider the interval)\ \ \ 0.8 ≤ m ≤ 1.2`

`text(When)\ \ m = 0.8`

`=>x = (40(0.8))/(1 + 0.8^2) = 19.512…\ text(m)`

`text(When)\ \ m = 1.2`

`=>x = (40(1.2))/(1 + 1.2^2) = 19.672…`

 

`text(S)text(ince interval includes)\ \ m = 1\ \ text(where the)`

`text(paintball has maximum range.)`

`x_(text(max)) = (40(1))/(1 + 1^2) = 20\ text(m)`

 

`:.\ text(Landing width interval)`

`= 20 − 19.512…`

`= 0.487…`

`= 0.5\ text(m)\ \ \ text{(to 1 d.p.)}`

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 4, Band 5, Band 6, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-80-Cartesian, smc-1062-95-Hit Wall

Mechanics, EXT2* M1 2004 HSC 6b

A fire hose is at ground level on a horizontal plane. Water is projected from the hose. The angle of projection, `theta`, is allowed to vary. The speed of the water as it leaves the hose, `v` metres per second, remains constant. You may assume that if the origin is taken to be the point of projection, the path of the water is given by the parametric equations

`x = vt\ cos\ theta`

`y = vt\ sin\ theta − 1/2 g t^2`

where  `g\ text(ms)^(−2)`  is the acceleration due to gravity.  (Do NOT prove this.)

  1. Show that the water returns to ground level at a distance`(v^2\ sin\ 2theta)/g`  metres from the point of projection.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

This fire hose is now aimed at a 20 metre high thin wall from a point of projection at ground level 40 metres from the base of the wall. It is known that when the angle  `theta`  is 15°, the water just reaches the base of the wall.  
 

Calculus in the Physical World, EXT1 2004 HSC 6b
 

  1. Show that  `v^2 = 80g`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Show that the cartesian equation of the path of the water is given by
     
         `y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Show that the water just clears the top of the wall if
     
         `tan^2\ theta − 4\ tan\ theta + 3 = 0`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. Find all values of  `theta`  for which the water hits the front of the wall.  (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `text(See Worked Solutions)`
  3. `text(See Worked Solutions)`
  4. `text(See Worked Solutions)`
  5. `15^@ ≤ theta ≤ 45^@ \ \ text(and)\ \ 71.6^@ ≤ theta ≤ 75^@`
Show Worked Solution
i.    `x` `= vt\ cos\ theta`
  `y` `= vt\ sin\ theta − 1/2 g t^2`

 

`text(Find)\ \ t\ \ text(when)\ \ y = 0`

`vt\ sin\ theta − 1/2 g t^2` `= 0`
`t(v\ sin\ theta − 1/2 g t)` `= 0`
`v\ sin\ theta − 1/2 g t` `= 0, \ \ t ≠ 0`
`1/2 g t` `= v\ sin\ theta`
`t` `= (2v\ sin\ theta)/g`

 

`text(Find)\ \ x\ \ text(when)\ \ t = (2v\ sin\ theta)/g`

`x` `= v · (2v\ sin\ theta)/g\ cos\ theta`
  `= (v^2 · \ 2\ sin\ theta\ cos\ theta)/g`
  `= (v^2\ sin\ 2theta)/g`

 

`:.\ text(When)\ \ x = (v^2\ sin\ 2theta)/g,\ \ \text(the water returns)`

`text(to ground level  … as required.)`

 

ii.   `text(Show)\ \ v^2 = 80\ text(g)`

`text(When)\ \ theta = 15^@, \ x = 40`

`text{From part (i)}`

`40` `= (v^2\ sin\ 30^@)/g`
`v^2 xx 1/2` `= 40g`
`v^2` `= 80g\ \ \ …text(as required)`

 

iii.  `text(Show)\ \ y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`

`x` `= vt\ cos\ theta`
`:.t` `= x/(v\ cos\ theta)`

 

`text(Substitute into)`

`y` `= vt\ sin\ theta − 1/2 g t^2`
  `= v · x/(v\ cos\ theta) · sin\ theta −1/2 g  (x/(v\ cos\ theta))^2`
  `= x\ tan\ theta − 1/2  g (x^2/(v^2\ cos^2\ theta))`
  `= x\ tan\ theta − 1/2  g · x^2/(80g\ cos^2\ theta)`
  `= x\ tan\ theta − (x^2\ sec^2\ theta)/160\ \ \ …text(as required.)`

 

iv.   `text(Water clears the top if)\ \ y = 20\ \ text(when)\ \ x = 40`

`text{Substitute into equation from (iii)}`

`40\ tan\ theta − (40^2\ sec^2\ theta)/160` `= 20`
`40\ tan\ theta − 10\ sec^2\ theta` `= 20`
`40\ tan\ theta − 10(1 + tan^2\ theta)` `= 20`
`40\ tan\ theta − 10 − 10\ tan^2\ theta` `= 20`
`10\ tan^2\ theta − 40\ tan\ theta\ + 30` `= 0`
`tan^2\ theta − 4\ tan\ theta + 3` `= 0\ \ \ text(… as required)`

 

v.   

Calculus in the Physical World, EXT1 2004 HSC 6b Answer

`text(Water hits the bottom of the wall when)`

`x = 40\ \ text(and)\ \ y = 0`

`40\ tan\ theta − (40^2\ sec^2\ theta)/160` `= 0`
`40\ tan\ theta − 10\ sec^2\ theta` `= 0`
`4\ tan\ theta − (1 + tan^2\ theta)` `= 0`
`tan^2\ theta − 4\ tan\ theta + 1` `= 0`

 

`text(Using the quadratic formula)`

`tan\ theta` `= (+4 ± sqrt(16 − 4 · 1 · 1))/ (2 xx 1)`
  `= (4 ± sqrt12)/2`
  `= 2 ± sqrt3`
`theta` `= 15^@\ \ text(or)\ \ 75^@`

 

`text(Water hits the top of the wall when)`

`x = 40\ text(and)\ \ y = 20`

`tan^2\ theta − 4\ tan\ theta + 3` `= 0\ \ \ text{from (iv)}`
`(tan\ theta − 1)(tan\ theta − 3)` `= 0`
`tan\ theta` `= 1` `text(or)` `tan\ theta` `= 3`
`theta` `= 45^@`   `theta` `= tan^(−1)\ 3`
        `= 71.565…`
        `= 71.6^@\ \ \text{(to 1 d.p.)}`

 

`:.\ text(Following the motion of the water as)\ \ theta\ \ text(increases,)`

`text(water hits the wall when)`

`15^@ ≤ theta ≤ 45^@` `\ text(and)`
`71.6^@ ≤ theta ≤ 75^@`  

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 3, Band 4, Band 5, Band 6, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-80-Cartesian, smc-1062-95-Hit Wall

Mechanics, EXT2* M1 2014 HSC 14a

The take-off point `O` on a ski jump is located at the top of a downslope. The angle between the downslope and the horizontal is  `pi/4`.  A skier takes off from `O` with velocity `V` m s−1 at an angle `theta` to the horizontal, where  `0 <= theta < pi/2`.  The skier lands on the downslope at some point `P`, a distance `D` metres from `O`.
 

2014 14a
 

The flight path of the skier is given by

`x = Vtcos theta,\ y = -1/2 g t^2 + Vt sin theta`,      (Do NOT prove this.)

where  `t`  is the time in seconds after take-off.

  1. Show that the cartesian equation of the flight path of the skier is given by
     
         `y =  x tan theta - (gx^2)/(2V^2) sec^2 theta`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Show that  
     
         `D = 2 sqrt 2 (V^2)/(g) cos theta (cos theta + sin theta)`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Show that  
     
         `(dD)/(d theta) = 2 sqrt 2 (V^2)/(g) (cos 2 theta - sin 2 theta)`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. Show that `D` has a maximum value and find the value of `theta` for which this occurs.   (3 marks)

    --- 9 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
  4. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution

i.  `text(Show)\ \ y = x tan theta – (gx^2)/(2V^2) sec^2 theta`

`x` `= Vt cos theta`
`t` `= x/(V cos theta)\ \ \ …\ text{(1)}`

`text(Subst)\ text{(1)}\ text(into)\ y = -1/2 g t^2 + Vt sin theta`

`y` `= -1/2 g (x/(Vcostheta))^2 + V sin theta (x/(Vcostheta))`
  `= (-gx^2)/(2V^2 cos^2 theta) + x * (sin theta)/(cos theta)`
  `= x tan theta – (gx^2)/(2V^2) sec^2 theta\ \ \ text(… as required.)`

 

ii.  `text(Show)\ D = 2 sqrt 2 (V^2)/g\ cos theta (cos theta + sin theta)`

♦♦ Mean mark 28%
MARKER’S COMMENT: The key to finding `P` and solving for `D` is to realise you need the intersection of the Cartesian equation in (i) and the line `y=–x`.

`text(S)text(ince)\ P\ text(lies on line)\ y = -x`

`-x` `=x tan theta – (gx^2)/(2V^2) sec^2 theta`
`-1` `=tan theta – (gx)/(2V^2) sec^2 theta`
`(gx)/(2V^2) sec^2 theta` `= tan theta + 1`
`x (g/(2V^2))` `=(sin theta)/(cos theta) * cos^2 theta + 1 * cos^2 theta`
`x` `=(2V^2)/g\ (sin theta cos theta + cos^2 theta)`
  `=(2V^2)/g\ cos theta (cos theta + sin theta)`

 

`text(Given that)\ \ cos(pi/4)` `= x/D = 1/sqrt2`
`text(i.e.)\ \ D` `= sqrt 2 x`

 
`:.\ D = 2 sqrt 2 (V^2)/g\ cos theta (cos theta + sin theta)`

`text(… as required.)`

 

iii.  `text(Show)\ (dD)/(d theta) = 2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)`

`D` `= 2 sqrt 2 (V^2)/g\ (cos^2 theta + cos theta sin theta)`
`(dD)/(d theta)` `= 2 sqrt 2 (V^2)/g\ [2cos theta (–sin theta) + cos theta cos theta + (– sin theta) sin theta]`
  `= 2 sqrt 2 (V^2)/(g) [(cos^2 theta – sin^2 theta) – 2 sin theta cos theta]`
  `= 2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)\ \ \ text(… as required)`

 

iv.  `text(Max/min when)\ (dD)/(d theta) = 0`

♦ Mean mark 47%
IMPORTANT: Note that students can attempt every part of this question, even if they couldn’t successfully prove earlier parts.
`2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)` `= 0`
`cos 2 theta – sin 2 theta` `= 0`
`sin 2 theta` `= cos 2 theta`
`tan 2 theta` `= 1`
`2 theta` `= pi/4`
`theta` `= pi/8`
`(d^2D)/(d theta^2)` `= 2 sqrt 2 (V^2)/g\ [-2 sin 2theta – 2 cos 2 theta]`
  `= 4 sqrt 2 (V^2)/g\ (-sin 2 theta – cos 2 theta)`

 

`text(When)\ \ theta = pi/8:`

`(d^2 D)/(d theta^2)` `= 4 sqrt 2 (V^2)/g\ (- sin (pi/4) – cos (pi/4))`
  `= 4 sqrt 2 (V^2)/g\ (- 1/sqrt2 – 1/sqrt2) < 0`
  ` =>\ text(MAX)`

 

`:.\ D\ text(has a maximum value when)\ theta = pi/8`

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 3, Band 4, Band 5, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-70-Sloped Landing, smc-1062-80-Cartesian

Copyright © 2014–2025 SmarterEd.com.au · Log in