SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2* M1 2019 HSC 13c

Two objects are projected from the same point on a horizontal surface. Object 1 is projected with an initial velocity of  `20\ text(ms)^(-1)` directed at an angle of  `pi/3`  to the horizontal. Object 2 is projected 2 seconds later.

The equations of motion of an object projected from the origin with initial velocity `v` at an angle `theta` to the `x`-axis are

`x = vt cos theta`

`y = -4.9t^2 + vt sin theta`,

where  `t`  is the time after the projection of the object. Do NOT prove these equations.

  1. Show that Object 1 will land at a distance  `(100 sqrt 3)/4.9` m from the point of projection.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. The two objects hit the horizontal plane at the same place and time.

     

    Find the initial speed and the angle of projection of Object 2, giving your answer correct to 1 decimal place.  (3 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ text{(See Worked Solutions)}`
  2. `24.2\ text(ms)^(-1)`
Show Worked Solution

a.   `text(Object 1:)`

`x` `= 20t cos\ pi/3`
  `= 10t`
`y` `= -4.9t^2 + 20t sin\ pi/3`
  `= -4.9t^2 + 10 sqrt 3 t`

 
`text(Let)\ \ t_1 = text{time of flight (Object 1)}`

`-4.9t_1^2 + 10 sqrt 3 t_1` `= 0`
`t_1(-4.9t_1 + 10 sqrt 3)` `= 0`
`4.9t_1` `= 10 sqrt 3\ \ (t >= 0)`
`t_1` `= (10 sqrt 3)/4.9`

 
`text(Find)\ \ x\ \ text(when)\ \ t_1 = (10 sqrt 3)/4.9:`

`x` `= 10 xx (10 sqrt 3)/4.9`
  `= (100 sqrt 3)/4.9\ text(… as required)`

 

(ii)   `text{Time of flight (Object 2)}= (10 sqrt 3)/4.9 – 2`

♦ Mean mark 42%.

`text(Range)` `= (100 sqrt 3)/4.9`
`(100 sqrt 3)/4.9` `= v((10 sqrt 3)/4.9 – 2) cos theta`
`v cos theta` `= (100 sqrt 3)/4.9 xx 4.9/(10 sqrt 3 – 9.8)`
`v cos theta` `= (100 sqrt 3)/(10 sqrt 3 – 9.8) \ \ \ …\ (1)`

 

`0` `= -4.9t^2 + vt sin theta`
`0` `= -4.9 xx ((10 sqrt 3)/4.9 – 2)^2 + v((10 sqrt 3)/4.9 – 2) sin theta`
`0` `= -4.9((10 sqrt 3 – 9.8)/4.9) + v sin theta`
`v sin theta` `= 10 sqrt 3 – 9.8 \ \ \ …\ (2)`

 
`(2) ÷ (1)`

`tan theta` `= (10 sqrt 3 – 9.8) xx (10 sqrt 3 – 9.8)/(100 sqrt 3)`
  `= 0.3265…`
`:. theta` `= 18.1^@\ text{(1 d.p.)}`

 
`text{Substitute into (2)}`

`:.v` `= (10 sqrt 3 – 9.8) /(sin 18.1^@)`
  `= 24.206`
  `= 24.2\ text(ms)^(-1)\ text{(1 d.p.)}`

Filed Under: Projectile Motion Tagged With: Band 3, Band 5, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-90-Projectiles Collide

Mechanics, EXT2* M1 2009 HSC 6a

Two points, `A` and `B`,  are on cliff tops on either side of a deep valley. Let `h` and `R` be the vertical and horizontal distances between `A` and `B` as shown in the diagram. The angle of elevation of `B` from `A` is  `theta`,  so that  `theta=tan^-1(h/R)`.
 

2009 6a
 

At time `t=0`,  projectiles are fired simultaneously from `A` and `B`.  The projectile from `A` is aimed at `B`, and has initial speed `U` at an angle of  `theta`  above the horizontal. The projectile from `B` is aimed at `A` and has initial speed `V` at an angle  `theta`  below the horizontal.

The equations of motion for the projectile from `A` are

`x_1=Utcos theta`   and   `y_1=Utsin theta-1/2 g t^2`,

and the equations for the motion of the projectile from `B` are

`x_2=R-Vtcos theta`   and   `y_2=h-Vtsin theta-1/2 g t^2`,     (DO NOT prove these equations.)

  1. Let `T` be the time at which  `x_1=x_2`.
     
    Show that  `T=R/((U+V)\ cos theta)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Show that the projectiles collide.    (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. If the projectiles collide on the line  `x=lambdaR`,  where  `0<lambda<1`,  show that
     
         `V=(1/lambda-1)U`.    (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof  (See Worked Solutions)}` 
  2. `text{Proof  (See Worked Solutions)}`
  3. `text{Proof  (See Worked Solutions)}`
Show Worked Solution

i.   `text(Let)\ \ x_1=x_2\ \ text(at)\ \ t=T`

`UTcos theta` `=R-VTcos theta`
`UTcos theta+VTcos theta` `=R`
`Tcos theta\ (U+V)` `=R`

 
 `:. T=R/((U+V)\ cos theta)\ \ text(… as required)`

 

ii.   `text(If particles collide,)\ \  y_1=y_2\ \ text(at)\ \ t=T`

♦♦♦ Mean mark data not available although “few” students were able to complete this part.
MARKER’S COMMENT: Better responses showed  `y_1=y_2`,  or  `y_1-y_2=0`  which eliminated  `–½ g t^2`  from the algebra. Substituting `tan theta=h//R` was a key element in completing this proof.
`y_1` `=UTsin theta-1/2 g T^2`
  `=(UR sin theta)/((U+V)\ cos theta)-1/2 g T^2`
`y_2` `=h-VTsin theta-1/2 g T^2`
  `=Rtan theta-(VR sin theta)/((U+V)\ cos theta)-1/2 g T^2`
  `=R(((sin theta/cos theta)(U+V) cos theta-V sin theta)/((U+V)\ cos theta))-1/2 g T^2`
  `=R/((U+V)\ cos theta)(Usin theta+Vsin theta-Vsin theta)-1/2 g T^2`
  `=(UR sin theta)/((U+V)\ cos theta)-1/2 g T^2`
  `=y_1`

 

`:.\ text(Particles collide since)\  y_1=y_2\ text(at)\ t=T`.

 

iii.  `text(Particles collide on line)\ \ x=lambdaR,\ text(i.e.  where)\ \ t=T`

MARKER’S COMMENT: Students must show sufficient working in proofs to convince markers they have derived the answer themselves.
`lambdaR` `=UTcos theta`
  `=U R/((U+V)\ cos theta)cos theta`
  `=(UR)/((U+V))`
`(U+V)(lambdaR)` `=UR`
`U+V` `=(UR)/(lambdaR)`
`V` `=U/lambda-U`
  `=(1/lambda-1)U\ \ text(… as required)`

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 4, Band 5, Band 6, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-90-Projectiles Collide

Mechanics, EXT2* M1 2013 HSC 13c

Points `A` and `B` are located `d` metres apart on a horizontal plane. A projectile is fired from `A` towards `B` with initial velocity `u` m/s at angle `alpha` to the horizontal.

At the same time, another projectile is fired from `B` towards `A` with initial velocity `w` m/s at angle `beta` to the horizontal, as shown on the diagram.

The projectiles collide when they both reach their maximum height.
 

2013 13c
 

The equations of motion of a projectile fired from the origin with initial velocity  `V` m/s at angle  `theta`  to the horizontal are

`x=Vtcostheta`   and   `y=Vtsintheta-g/2 t^2`.        (DO NOT prove this.)

  1. How long does the projectile fired from  `A`  take to reach its maximum height?  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Show that  `usinalpha=w sin beta`.    (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Show that  `d=(uw)/(g)sin(alpha+beta)`.    (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(u)/(g) sin alpha\ \ text(seconds)`
  2. `text{Proof  (See Worked Solutions)}`
  3. `text{Proof  (See Worked Solutions)}`
Show Worked Solution

i.   `y=Vtsintheta-g/2 t^2`

`text(Projectile)\ A\   => V=u,\ \ theta=alpha`

`y` `=ut sinalpha- (g)/2 t^2`
`doty` `=u sinalpha- g t`

 

`text(Max height when)\  doty=0`

`0` `=usinalpha-g t`
`g t` `=usinalpha`
`t` `=(u)/(g)sinalpha`

 
`:.\ text(Projectile from)\ A\ text(reaches max height at)`

 `t=(u)/(g)sin alpha\ \ text(seconds)`

 

ii.  `text(Show that)\ \ usin alpha=wsin beta`

IMPORTANT: Part (i) in this example leads students to a very quick solution. Always look to previous parts for clues to direct your strategy.

`text(Projectile)\ B\ =>V=w,\ \ theta=beta`

`y` `=wt sin beta- (g)/2 t^2`
`doty` `=wsin beta-g t`

 

`text(Max height when)\ \ doty=0`

`t=(w)/(g) sin beta`

`text{Projectiles collide at max heights}`

`text(S)text(ince they were fired at the same time)`

`(u)/(g) sin alpha` `=(w)/(g) sin beta`
`:.\ usin alpha` `=wsin beta\ \ text(… as required)`

 

iii  `text(Show)\ \ d=(uw)/(g) sin (alpha+beta) :`

`text(Find)\ x text(-values for each projectile at max height)`

`text(Projectile)\ A`

`x_1` `=utcos alpha`
  `=u((u)/(g) sin alpha)cos alpha`
  `=(u^2)/(g) sin alpha cos alpha`

 

`text(Projectile)\ B`

♦ Mean mark 39%
IMPORTANT: Students should direct their calculations by reverse engineering the required result. `sin(alpha+beta)` in the proof means that  `sin alpha cos beta+“ cos alpha sin beta`  will appear in the working calculations.
`x_2` `=wt cos beta`
  `=w((w)/(g) sin beta)cos beta`
  `=(w^2)/(g) sin beta cos beta`
`d` `=x_1+x_2`
  `=(u^2)/(g) sin alpha cos alpha+(w^2)/(g) sin beta cos beta`
  `=(u)/(g)(u sin alpha)cos alpha+(w)/(g) (w sin beta) cos beta`
  `=(u)/(g)(w sin beta) cos alpha+(w)/(g) (usin alpha)cos beta\ \ text{(part (ii))}`
  `=(uw)/(g) (sin alpha cos beta+cos alpha sin beta)`
  `=(uw)/(g) sin (alpha+beta)\ \ text(… as required)`

 

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 4, Band 5, Band 6, smc-1062-20-Max Height, smc-1062-90-Projectiles Collide

Copyright © 2014–2025 SmarterEd.com.au · Log in