The projection of \(\underset{\sim}{u}\) onto \(\underset{\sim}{v}\) is given by \(\left(\dfrac{\underset{\sim}{u} \cdot \underset{\sim}{v}}{|\underset{\sim}{v}|^2}\right) \underset{\sim}{v}\).
What is the projection of \(\underset{\sim}{u}=\underset{\sim}{i}+2 \underset{\sim}{j}\) onto \(\underset{\sim}{v}=2 \underset{\sim}{i}-3 \underset{\sim}{j}\) ?
- \(-\dfrac{4}{5}(\underset{\sim}{i}+2 \underset{\sim}{j})\)
- \(-\dfrac{4}{13}(2 \underset{\sim}{i}-3 \underset{\sim}{j})\)
- \(-\dfrac{4}{\sqrt{5}}(\underset{\sim}{i}+2 \underset{\sim}{j})\)
- \(-\dfrac{4}{\sqrt{13}}(2 \underset{\sim}{i}-3 \underset{\sim}{j})\)