SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Combinatorics, EXT1 A1 2017 HSC 9 MC

When expanded, which expression has a non-zero constant term?

A.     `(x + 1/(x^2))^7`

B.     `(x^2 + 1/(x^3))^7`

C.     `(x^3 + 1/(x^4))^7`

D.     `(x^4 + 1/(x^5))^7`

Show Answers Only

`C`

Show Worked Solution

`text(Consider the general term for option)\ A:`

`T_k` `= \ ^7C_k · x^(7 – k) · x^(−2k)`
  `= \ ^7C_k · x^(7 – 3k)`

 
`text(Non zero constant term occurs when)`

`7 – 3k` `= 0`
`k` `= 7/3 => text(no terms exists)\ (k\ text{not integer)}`

 
`text(Consider option)\ C:`

`T_k` `= \ ^7C_k · x^(3(7 – k)) · x^(−4k)`
  `= \ ^7C_k · x^(21 – 7k)`
`21 – 7k` `= 0`
`k` `= 3`

 
`:.\ text(Non-zero constant term exists)`

`text(since)\ k\ text(is an integer)`

`⇒C`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-20-Independent Term

Combinatorics, EXT1′ A1 2016 HSC 6 MC

Let  `p(x) = 1 + x + x^2 + x^3 + … + x^12.`

What is the coefficient of `x^8` in the expansion of  `p (x + 1)?`

  1. `1`
  2. `495`
  3. `715`
  4. `1287`
Show Answers Only

`=> C`

Show Worked Solution

`p(x + 1) = 1 + (x + 1) + (x + 1)^2 + … + (x + 1)^12`

`text(Coefficient of)\ x^8`

`=\ ^12C_8 +\ ^11C_8 +\ ^10C_8 +\ ^9C_8 +\ ^8C_8`

`= 715`

`=> C`

Filed Under: Binomial Expansion (Ext1), Probability and The Binomial Tagged With: Band 4, smc-1088-20-Independent Term

Combinatorics, EXT1 A1 2005 HSC 2b

Use the binomial theorem to find the term independent of  `x`  in the expansion of

`(2x - 1/x^2)^12.`  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`((12), (4)) * 2^8 * (-1)^4 = 126\ 720`

Show Worked Solution

`T_k =\ text(General term of)\ \ (2x – 1/x^2)^12`

`T_k` `= ((12), (k)) (2x)^(12 – k) * (-1)^k * (x^-2)^k`
  `= ((12), (k)) * 2^(12 – k) * x^(12 – k) * (-1)^k * x^(-2k)`
  `= ((12), (k)) * 2^(12 – k) * (-1)^k * x^(12 – 3k)`

 

`text(Independent term occurs when)`

MARKER’S COMMENT: The general term formula was well known, but many could not apply it to this question.
`x^(12-3k)` `= x^0`
`12 – 3k` `= 0`
`k` `= 4`

 

`:.\ text(Independent term is)`

`((12), (4)) * 2^8 * (-1)^4 = 126\ 720`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 5, smc-1088-20-Independent Term

Combinatorics, EXT1 A1 2015 HSC 13b

Consider the binomial expansion
 

`(2x + 1/(3x))^18 = a_0x^(18) + a_1x^(16) + a_2x^(14) + …`
 

where `a_0, a_1, a_2`, . . . are constants.

  1. Find an expression for `a_2`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find an expression for the term independent of `x`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(\ ^18C_2 · 2^(16))/(3^2)`
  2. `(\ ^(18)C_9 · 2^9)/(3^9)`
Show Worked Solution

i.   `text(Need co-efficient of)\ x^(14)`

`text(General term of)\ (2x + 1/(3x))^(18)`

`T_k` `= \ ^(18)C_k(2x)^(18 − k) · (1/(3x))^k`
  `= \ ^(18)C_k · 2^(18 − k) · x^(18 − k) · 3^(−k) · x^(−k)`
  `= \ ^(18)C_k · 2^(18 − k) · 3^(−k) · x^(18 − 2k)`

 

`a_2\ text(occurs when:)`

`18 − 2k` `= 14`
`2k` `= 4`
`k` `= 2`

 

`:.a_2` `= \ ^(18)C_2 · 2^(18 − 2) · 3^(−2)`
  `= (\ ^(18)C_2 · 2^(16))/(3^2)`

 

ii.  `text(Independent term occurs when:)`

`18 − 2k` `= 0`
`2k` `= 18`
`k` `= 9`

 
`:.\ text(Independent term)`

`= \ ^(18)C_9 · 2^(18− 9) · 3^(−9)`

`= (\ ^(18)C_9 · 2^9)/(3^9)`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 3, Band 4, smc-1088-10-Coefficients, smc-1088-20-Independent Term

Combinatorics, EXT1 A1 2014 HSC 3 MC

What is the constant term in the binomial expansion of   `(2x - 5/(x^3))^12`?

  1. `((12),(3)) 2^9 5^3`
  2. `((12),(9)) 2^3 5^9`
  3. `-((12),(3)) 2^9 5^3`
  4. `-((12),(9)) 2^3 5^9`
Show Answers Only

`C`

Show Worked Solution

`text(General term)`

`T_k` `= ((12),(k)) (2x)^(12-k) * (-1)^k *(5x^(-3))^k`
  `= ((12),(k)) 2^(12-k) * x^(12-k) * (-1)^k * 5^k * x^(-3k)`
  `= ((12),(k)) (-1)^k * 2^(12-k) * 5^k * x^(12-4k)`

 
`text(Constant term when)`

`12 – 4k` `= 0`
`k` `= 3`

 
`:.\ text(Constant term)`

`=((12),(3)) (-1)^3 * 2^9 * 5^3`

`= – ((12),(3)) * 2^9 * 5^3`
 

`=>  C`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 3, smc-1088-20-Independent Term

Combinatorics, EXT1 A1 2012 HSC 11f

 

  1. Use the binomial theorem to find an expression for the constant term in the expansion of 
     
     
    `(2x^3 - 1/x)^12`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. For what values of  `n`  does  `(2x^3 - 1/x)^n`  have a non-zero constant term?    (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `-1760`
  2. `n\ text(must be a multiple of 4)`
Show Worked Solution

i.  `text(General term)`

`\ ^12C_k * (2x^3)^(12\ – k) (-1/x)^k` 

`=\ ^12C_k * (–1)^k *2^(12\ – k) * x^(36\ – 3k)  * x^(-k)`

`=\ ^12C_k * (–1)^k*2^(12\ – k) * x^(36\ – 4k)`
 

`text(Constant term occurs when)`

`36\ – 4k` `= 0`
`k` `= 9`

 

`:.\ text(Constant term)` `=\ ^12C_9 * (–1)^9*2^3`
  `= – (12!)/(3!9!) xx 8`
  `= – 1760`

 

ii.  `text(General term of)\ (2x^3\ – 1/x)^n`

♦♦♦ Mean mark 16%.

`\ ^nC_k * (2x^3)^(n\ – k) (–1/x)^k`

`=\ ^nC_k * 2^(n\ – k) * x^(3n\ – 3k) * (–1)^k * x^(-k)`

`=\ ^nC_k * (–1)^k*2^(n\ -k) * x^(3n\ – 4k)`

 

`text(Constant term when)\ \ 3n\ – 4k = 0.`

`text(i.e.)\ \ k=3/4n`
 

`text(S)text(ince)\ n\ text(and)\ k\ text(must be integers,)\ \ n\ \ text(must)`

`text(be a multiple of 4.)`

Filed Under: 17. Binomial EXT1, Binomial Expansion (Ext1) Tagged With: Band 4, Band 6, smc-1088-20-Independent Term

Copyright © 2014–2025 SmarterEd.com.au · Log in