When expanded, which expression has a non-zero constant term?
A. `(x + 1/(x^2))^7`
B. `(x^2 + 1/(x^3))^7`
C. `(x^3 + 1/(x^4))^7`
D. `(x^4 + 1/(x^5))^7`
Aussie Maths & Science Teachers: Save your time with SmarterEd
When expanded, which expression has a non-zero constant term?
A. `(x + 1/(x^2))^7`
B. `(x^2 + 1/(x^3))^7`
C. `(x^3 + 1/(x^4))^7`
D. `(x^4 + 1/(x^5))^7`
`C`
`text(Consider the general term for option)\ A:`
`T_k` | `= \ ^7C_k · x^(7 – k) · x^(−2k)` |
`= \ ^7C_k · x^(7 – 3k)` |
`text(Non zero constant term occurs when)`
`7 – 3k` | `= 0` |
`k` | `= 7/3 => text(no terms exists)\ (k\ text{not integer)}` |
`text(Consider option)\ C:`
`T_k` | `= \ ^7C_k · x^(3(7 – k)) · x^(−4k)` |
`= \ ^7C_k · x^(21 – 7k)` |
`21 – 7k` | `= 0` |
`k` | `= 3` |
`:.\ text(Non-zero constant term exists)`
`text(since)\ k\ text(is an integer)`
`⇒C`
Let `p(x) = 1 + x + x^2 + x^3 + … + x^12.`
What is the coefficient of `x^8` in the expansion of `p (x + 1)?`
`=> C`
`p(x + 1) = 1 + (x + 1) + (x + 1)^2 + … + (x + 1)^12`
`text(Coefficient of)\ x^8`
`=\ ^12C_8 +\ ^11C_8 +\ ^10C_8 +\ ^9C_8 +\ ^8C_8`
`= 715`
`=> C`
Use the binomial theorem to find the term independent of `x` in the expansion of
`(2x - 1/x^2)^12.` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`((12), (4)) * 2^8 * (-1)^4 = 126\ 720`
`T_k =\ text(General term of)\ \ (2x – 1/x^2)^12`
`T_k` | `= ((12), (k)) (2x)^(12 – k) * (-1)^k * (x^-2)^k` |
`= ((12), (k)) * 2^(12 – k) * x^(12 – k) * (-1)^k * x^(-2k)` | |
`= ((12), (k)) * 2^(12 – k) * (-1)^k * x^(12 – 3k)` |
`text(Independent term occurs when)`
`x^(12-3k)` | `= x^0` |
`12 – 3k` | `= 0` |
`k` | `= 4` |
`:.\ text(Independent term is)`
`((12), (4)) * 2^8 * (-1)^4 = 126\ 720`
Consider the binomial expansion
`(2x + 1/(3x))^18 = a_0x^(18) + a_1x^(16) + a_2x^(14) + …`
where `a_0, a_1, a_2`, . . . are constants.
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Need co-efficient of)\ x^(14)`
`text(General term of)\ (2x + 1/(3x))^(18)`
`T_k` | `= \ ^(18)C_k(2x)^(18 − k) · (1/(3x))^k` |
`= \ ^(18)C_k · 2^(18 − k) · x^(18 − k) · 3^(−k) · x^(−k)` | |
`= \ ^(18)C_k · 2^(18 − k) · 3^(−k) · x^(18 − 2k)` |
`a_2\ text(occurs when:)`
`18 − 2k` | `= 14` |
`2k` | `= 4` |
`k` | `= 2` |
`:.a_2` | `= \ ^(18)C_2 · 2^(18 − 2) · 3^(−2)` |
`= (\ ^(18)C_2 · 2^(16))/(3^2)` |
ii. `text(Independent term occurs when:)`
`18 − 2k` | `= 0` |
`2k` | `= 18` |
`k` | `= 9` |
`:.\ text(Independent term)`
`= \ ^(18)C_9 · 2^(18− 9) · 3^(−9)`
`= (\ ^(18)C_9 · 2^9)/(3^9)`
What is the constant term in the binomial expansion of `(2x - 5/(x^3))^12`?
`C`
`text(General term)`
`T_k` | `= ((12),(k)) (2x)^(12-k) * (-1)^k *(5x^(-3))^k` |
`= ((12),(k)) 2^(12-k) * x^(12-k) * (-1)^k * 5^k * x^(-3k)` | |
`= ((12),(k)) (-1)^k * 2^(12-k) * 5^k * x^(12-4k)` |
`text(Constant term when)`
`12 – 4k` | `= 0` |
`k` | `= 3` |
`:.\ text(Constant term)`
`=((12),(3)) (-1)^3 * 2^9 * 5^3`
`= – ((12),(3)) * 2^9 * 5^3`
`=> C`
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(General term)`
`\ ^12C_k * (2x^3)^(12\ – k) (-1/x)^k`
`=\ ^12C_k * (–1)^k *2^(12\ – k) * x^(36\ – 3k) * x^(-k)`
`=\ ^12C_k * (–1)^k*2^(12\ – k) * x^(36\ – 4k)`
`text(Constant term occurs when)`
`36\ – 4k` | `= 0` |
`k` | `= 9` |
`:.\ text(Constant term)` | `=\ ^12C_9 * (–1)^9*2^3` |
`= – (12!)/(3!9!) xx 8` | |
`= – 1760` |
ii. `text(General term of)\ (2x^3\ – 1/x)^n`
`\ ^nC_k * (2x^3)^(n\ – k) (–1/x)^k`
`=\ ^nC_k * 2^(n\ – k) * x^(3n\ – 3k) * (–1)^k * x^(-k)`
`=\ ^nC_k * (–1)^k*2^(n\ -k) * x^(3n\ – 4k)`
`text(Constant term when)\ \ 3n\ – 4k = 0.`
`text(i.e.)\ \ k=3/4n`
`text(S)text(ince)\ n\ text(and)\ k\ text(must be integers,)\ \ n\ \ text(must)`
`text(be a multiple of 4.)`