SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Combinatorics, EXT1 A1 2025 HSC 13e

  1. The Pascal's triangle relation can be expressed as
    1. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}.\) (Do NOT prove this.)
  2. Show that \(\displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\).   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Hence, or otherwise, prove that
  4. \(\displaystyle\binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\).   (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)

\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)

\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)

\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)

\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
 

ii.    \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)

\(\text{Using part (i)}:\)

\(\operatorname{LHS}\) \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\)
  \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\)
  \(=1-1+\displaystyle \binom{2051}{2001}\)
  \(=\displaystyle \binom{2051}{2001}\)
Show Worked Solution

i.    \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)

\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)

\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)

\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)

\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
 

ii.    \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)

\(\text{Using part (i)}:\)

\(\operatorname{LHS}\) \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\)
  \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\)
  \(=1-1+\displaystyle \binom{2051}{2001}\)
  \(=\displaystyle \binom{2051}{2001}\)

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 3, Band 4, smc-1088-30-Proofs

Combinatorics, EXT1 A1 2023 HSC 12d

It is known that  \({ }^n C_r={ }^{n-1} C_{r-1}+{ }^{n-1} C_r\)  for all integers such that  \(1 \leq r \leq n-1\). (Do NOT prove this.)

Find ONE possible set of values for \(p\) and \(q\) such that

\({ }^{2022} C_{80}+{ }^{2022} C_{81}+{ }^{2023} C_{1943}={ }^p C_q\)  (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(p=2024, q=81 \)

Show Worked Solution

\({ }^{2022} C_{80}+{ }^{2022} C_{81}+{ }^{2023} C_{1943}={ }^p C_q\)

\(\text{Using the known relationship:} \)

\({ }^{2022} C_{80}+{ }^{2022} C_{81} = { }^{2023} C_{81}\ \ …\ (1)\)

\(\text{Also, since}\ \ { }^n C_r={ }^n C_{n-r} \)

\({ }^{2023} C_{1943} = { }^{2023} C_{2023-1943} = { }^{2023} C_{80}\ \ …\ (2)\) 

\({ }^{2022} C_{80}+{ }^{2022} C_{81}+{ }^{2023} C_{1943}\) \(={ }^{2023} C_{81}+{ }^{2023} C_{1943}\ \ \text{(see (1) above)}\)  
  \(={ }^{2023} C_{81}+{ }^{2023} C_{80}\ \ \text{(see (2) above)} \)  
  \(={ }^{2024} C_{81} \)  

 
\(\therefore p=2024, q=81 \)

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-30-Proofs

Combinatorics, EXT1 A1 2020 HSC 14a

  1. Use the identity `(1 + x)^(2n) = (1 + x)^n(1 + x)^n`

     

    to show that
     
        `((2n),(n)) = ((n),(0))^2 + ((n),(1))^2 + … + ((n),(n))^2`,
     
    where `n` is a positive integer.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. A club has `2n` members, with `n` women and `n` men.

     

    A group consisting of an even number `(0, 2, 4, …, 2n)` of members is chosen, with the number of men equal to the number of women.
     
    Show, giving reasons, that the number of ways to do this is `((2n),(n))`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. From the group chosen in part (ii), one of the men and one of the women are selected as leaders.

     

    Show, giving reasons, that the number of ways to choose the even number of people and then the leaders is
     

     

        `1^2 ((n),(1))^2 + 2^2((n),(2))^2 + … + n^2((n),(n))^2`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. The process is now reversed so that the leaders, one man and one woman, are chosen first. The rest of the group is then selected, still made up of an equal number of women and men.

     

    By considering this reversed process and using part (ii), find a simple expression for the sum in part (iii).  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `text(See Worked Solutions)`
  3. `text(See Worked Solutions)`
  4. `n^2 xx \ ^(2n – 2)C_(n – 1)`
Show Worked Solution

i.   `text(Expand)\ \ (1 + x)^(2n):`

♦♦ Mean mark part (i) 26%.

`\ ^(2n)C_0 + \ ^(2n)C_1 x^2 + … + \ ^(2n)C_n x^n + … \ ^(2n)C_(2n) x^(2n)`

`=> text(Coefficient of)\ \ x^n = \ ^(2n)C_n`
 

`text(Expand)\ \ (1 + x)^n (1 + x)^n:`

`[\ ^nC_0 + \ ^nC_1 x + … + \ ^nC_n x^n][\ ^nC_0 + \ ^nC_1 x + … + \ ^nC_n x^n]`

`=> \ text(Coefficient of)\ \ x^n`

`= \ ^nC_0 · \ ^nC_n + \ ^nC_1 · \ ^nC_(n – 1) + … + \ ^nC_(n – 1) · \ ^nC_1 + \ ^nC_n · \ ^nC_0`

`= (\ ^nC_0)^2 + (\ ^nC_1)^2 + … + (\ ^nC_(n – 1))^2 + (\ ^nC_n)^2\ \ \ (\ ^nC_k = \ ^nC_(n – k))`
 

`text(Equating coefficients:)`

`\ ^(2n)C_n = (\ ^nC_0)^2 + (\ ^nC_1)^2 + … + (\ ^nC_n)^2`

♦♦ Mean mark part (ii) 23%.

 

ii.   `text(Number of men = Number of women)\ \ (M = W)`

`text(If)\ \ M = W = 0:`  `text(Ways) = \ ^nC_0 · \ ^nC_0 = (\ ^nC_0)^2`
`text(If)\ \ M = W = 1:`  `text(Ways) = \ ^nC_1 · \ ^nC_1 = (\ ^nC_1)^2`

`vdots`

`text(If)\ \ M = W = n:  text(Ways) = \ ^nC_n · \ ^nC_n = (\ ^nC_n)^2`
 

`:.\ text(Total combinations)`

`= (\ ^nC_0)^2 + (\ ^nC_1)^2 + … + (\ ^nC_n)^2`

`= \ ^(2n)C_n\ \ \ text{(from part (i))}`

 

iii.   `text(Let)\ \ M_L = text(possible male leaders)`

♦♦ Mean mark part (iii) 26%.

`text(Let)\ \ W_L = text(possible female leaders)`

`text(If)\ \ M = W = 0 => text(no leaders)`

`text(If)\ \ M = W = 1:  text(Ways) = \ ^nC_1 xx M_L xx \ ^nC_1 xx W_L = 1^2 (\ ^nC_1)^2`

`text(If)\ \ M = W = 2:  text(Ways) = \ ^nC_2 xx 2 xx \ ^nC_2 xx 2 = 2^2 (\ ^nC_2)^2`

`vdots`

`text(If)\ \ M = W = n:  text(Ways) = \ ^nC_n xx n xx \ ^nC_2 xx n = n^2 (\ ^nC_n)^2`
 

`:.\ text(Total combinations)`

`= 1^2(\ ^nC_1)^2 + 2^2(\ ^nC_2)^2 + … + n^2(\ ^nC_n)^2`

♦♦♦ Mean mark part (iv) 16%.

 

iv.  `text(If)\ \ M = W = 1:  text(Ways)` `= M_L xx \ ^(n – 1)C_0 xx W_L xx \ ^(n – 1)C_0`
    `= n xx \ ^(n – 1)C_0 xx n xx \ ^(n – 1)C_0`
    `= n^2(\ ^(n – 1)C_0)^2`
`text(If)\ \ M = W = 2:  text(Ways)` `= n xx \ ^(n – 1)C_1 xx n xx \ ^(n – 1)C_1`
  `= n^2(\ ^(n – 1)C_1)^2`

`vdots`

`text(If)\ \ M = W = n:\ text(Ways)` `= n xx \ ^(n – 1)C_(n – 1) xx n xx \ ^(n – 1)C_(n – 1)`
  `= n^2(\ ^(n – 1)C_(n – 1))^2`

 
`:.\ text(Total combinations)`

`= n^2(\ ^(n – 1)C_0)^2 + n^2(\ ^(n – 1)C_1)^2 + … + n^2(\ ^(n – 1)C_(n – 1))^2`

`= n^2 xx \ ^(2(n – 1))C_(n – 1)\ \ \ text{(using part (i))}`

`= n^2 xx \ ^(2n – 2)C_(n – 1)`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 5, Band 6, smc-1088-30-Proofs

Combinatorics, EXT1 A1 2019 MET1 8

A fair standard die is rolled 50 times. Let `W` be a random variable with binomial distribution that represents the number of times the face with a six on it appears uppermost.

  1. Write down the expression for  `P(W = k)`, where  `k in {0, 1, 2, …, 50}`.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Show that  `(P(W = k + 1))/(P(W = k)) = (50 - k)/(5(k + 1))`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `\ ^50 C_k ⋅ (1/6)^k ⋅ (5/6)^(50 – k)`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution

a.  `P(W = k) = \ ^50 C_k ⋅ (1/6)^k ⋅ (5/6)^(50 – k)`

 

b.   `(P(W = k + 1))/(P(W = k))` `= (\ ^50C_(k+1) ⋅ (1/6)^(k+1) ⋅ (5/6)^(49 – k))/(\ ^ 50C_k ⋅ (1/6)^k ⋅ (5/6)^(50-k))`
    `= ((50!)/((49 – k)!(k + 1)!) ⋅ (1/6))/((50!)/((50 – k)! k!) ⋅ (5/6))`
    `= ((50 – k)!k!)/(5(49 – k)!(k + 1)!)`
    `= (50 – k)/(5(k + 1))`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, Band 5, smc-1088-30-Proofs

Combinatorics, EXT1 A1 EQ-Bank 10

By using the fact that  `(1 + x)^11 = (1 + x)^3(1 + x)^8`, show that
 

`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(General term of)\ \ (1 + x)^11 :`

`T_k = \ ^11C_k · 1^(11 – k) · x^k`

`=> \ ^11C_5\ text(is the co-efficient of)\ x^5`
 

`(1 + x)^3 = \ ^3C_0 + \ ^3C_1 x + \ ^3C_2 x^2 + \ ^3C_3 x^3`

`(1 + x)^8 = \ ^8C_0 + \ ^8C_1 x + \ ^8C_2 x^2 + \ ^8C_3 x^3 + \ ^8C_4 x^4 + \ ^8C_5 x^5 + …`

 
`:.\ text(Coefficient of)\ x^5\ text(in)\ \ (1 + x)^3(1 + x)^8 `

`= \ ^3C_0 · \ ^8C_5 + \ ^3C_1 · \ ^8C_4 + \ ^3C_2 · \ ^8C_3 + \ ^3C_3 · \ ^8C_2`

`= \ ^8C_5 + \ ^3C_1 · \ ^8C_4 + \ ^3C_2 · \ ^8C_3 + \ ^8C_2`

 
`text(Equating coefficients:)`

`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-30-Proofs

Combinatorics, EXT1 A1 EQ-Bank 8

Show `\ ^nC_k = \ ^nC_(n - k)`.  (1 mark)

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`\ ^nC_k = (n!)/((n – k)!k!)`

`\ ^nC_(n – k)` `= (n!)/((n – (n – k))!(n – k)!)`
  `= (n!)/(k!(n – k)!)`
  `= \ ^nC_k`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 3, smc-1088-30-Proofs

Combinatorics, EXT1 A1 EQ-Bank 7

Show `\ ^nC_k = \ ^(n-1)C_(k-1) + \ ^(n-1)C_k`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(LHS) = (n!)/((n-k)!k!)`

`text(RHS)` `= ((n-1)!)/((n-1-(k-1))!(k-1)!) + ((n-1)!)/((n-1-k)!k!)`
  `= ((n-1)!k)/((n-k)!(k-1)!k) + ((n-1)!(n-k))/((n-k-1)!(n-k)k!)`
  `= ((n-1)!k)/((n-k)!k!) + ((n-1)!(n-k))/((n-k)!k!)`
  `= ((n-1)!(k + n-k))/((n-k)!k!)`
  `= (n!)/((n-k)!k!)`
  `=\ text(LHS)`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 4, smc-1088-30-Proofs

Combinatorics, EXT1 A1 SM-Bank 2

Using `(1 + x)^4(1 + x)^9 = (1 + x)^13`

show that

   `\ ^9C_4 + \ ^4C_1\ ^9C_3 + \ ^4C_2\ ^9C_2 + \ ^4C_3\ ^9C_1 + 1 = \ ^13C_4`   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(See Worked Solutions)`

Show Worked Solution

`text(Expanding)\ \ (1 + x)^13 :`

`T_k = \ ^13C_k · 1^(13 – k) · x^k`

`=> \ ^13C_4\ text(is coefficient of)\ x^4`
 

`(1 + x)^4 = \ ^4C_0 + \ ^4C_1 x + \ ^4C_2 x^2 + \ ^4C_3 x^3 + \ ^4C_4 x^4`

`(1 + x)^9 = \ ^9C_0 + \ ^9C_1 x + \ ^9C_2 x^2 + \ ^9C_3 x^3 + \ ^9C_4 x^4 + …`

 

`:.\ text(Coefficient of)\ x^4\ text(in)\ \ (1 + x)^4(1 + x)^9`

`= \ ^4C_0·\ ^9C_4 + \ ^4C_1·\ ^9C_3 + \ ^4C_2·\ ^9C_2 + \ ^4C_3·\ ^9C_1 + \ ^4C_4·\ ^9C_0`

`= \ ^9C_4 + \ ^4C_1·\ ^9C_3 + \ ^4C_2·\ ^9C_2 + \ ^4C_3·\ ^9C_1 + 1`

`= \ ^13C_4\ \ …\ text(as required)`

Filed Under: Binomial Expansion (Ext1) Tagged With: Band 5, smc-1088-30-Proofs

Copyright © 2014–2025 SmarterEd.com.au · Log in