Given \(y=x e^{-3 x}\), prove that
\(\dfrac{d^2 y}{d x^2}+6 \dfrac{d y}{d x}+9 y=0\) (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given \(y=x e^{-3 x}\), prove that
\(\dfrac{d^2 y}{d x^2}+6 \dfrac{d y}{d x}+9 y=0\) (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(\text{Proof (See worked solution}\)
\(y=x e^{-3 x}\)
\(\dfrac{d y}{d x}=e^{-3 x}-3 x e^{-3 x}\)
| \(\dfrac{d^2 y}{d x^2}\) | \(=-3 e^{-3 x}-3 e^{-3 x}+3 \cdot 3 x e^{-3 x}\) |
| \(=-6 e^{-3 x}+9 x e^{-3 x}\) |
\(\text {Substituting into equation: }\)
\(\dfrac{d^2 y}{d x^2}+6 \dfrac{d y}{d x}+9 y\)
\(=-6 e^{-3 x}+9 x e^{-3 x}+6\left(e^{-3 x}-3 x e^{-3 x}\right)+9 x e^{-3 x}\)
\(=-6 e^{-3 x}+9 x e^{-3 x}+6 e^{-3 x}-18 x e^{-3 x}+9 x e^{-3 x}\)
\(=0\)
For what values of `x` is `f(x) = x^2 - 2x^3` increasing? (3 marks)
`x ∈ (0, 1/3)`
| `f(x)` | `= x^2 – 2x^3` |
| `f′(x)` | `= 2x – 6x^2` |
`f(x)\ \ text(is increasing when)\ \ f′(x) > 0`
`2x – 6x^2 > 0`
`2x(1 – 3x) > 0`
`x ∈ (0, 1/3)`
Find the coordinates of the stationary point on the graph `y = e^x − ex`, and determine its nature. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(1,0)\ =>text(MINIMUM)`
| `y` | `= e^x – ex` |
| `dy/dx` | `= e^x – e` |
| `(d^2 y)/(dx^2)` | `= e^x` |
`text(S.P. when)\ \ dy/dx = 0`
| `e^x – e` | `= 0` |
| `e^x` | `= e^1` |
| `x` | `= 1` |
`text(At)\ \ x = 1`
| `y` | `= e^1 – e = 0` |
| `(d^2 y)/(dx^2)` | `= e > 0\ \ => text(MIN)` |
`:.\ text(MINIMUM S.P. at)\ (1,0)`
Let `f(x) = x^3-3x^2 + kx + 8`, where `k` is a constant.
Find the values of `k` for which `f(x)` is an increasing function. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`k>3`
| `f(x)` | `= x^3-3x^2 + kx + 8` |
| `f^{′}(x)` | `= 3x^2-6x + k` |
`f(x)\ text(is increasing when)\ \ f^{′}(x) > 0`
`=> 3x^2-6x + k > 0`
`f^{′}(x)\ text(is always positive)`
`=> f^{′}(x)\ text(is a positive definite.)`
`text(i.e. when)\ \ a > 0\ text(and)\ Delta < 0`
`a=3>0`
`Delta = b^2-4ac`
| `:. (-6)^2-(4 xx 3 xx k)` | `<0` |
| `36-12k` | `<0` |
| `12k` | `>36` |
| `k` | `>3` |
`:.\ f(x)\ text(is increasing when)\ \ k > 3.`
The cubic `y = ax^3 + bx^2 + cx + d` has a point of inflection at `x = p`.
Show that `p= - b/(3a)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Show)\ \ p= – b/(3a)`
| `y` | `=ax^3 + bx^2 + cx + d` |
| `y prime` | `=3ax^2 + 2bx + c` |
| `y″` | `=6ax + 2b` |
`text(Given P.I. occurs when)\ \ x = p`
`=> y″=0\ \ text(when)\ \ x=p`
| `:.\ 6ap + 2b` | `=0` |
| `6ap` | `=-2b` |
| `p` | `= -(2b)/(6a)` |
| `=-b/(3a)\ \ \ text(… as required)` |