SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Graphs, SPEC1 2012 VCAA 10

Consider the functions with rules  `f(x) = arcsin (x/2) + 3/sqrt (25 x^2-1)`  and  `g(x) = arcsin (3x)-3/sqrt (25x^2-1).`

    1. Find the maximal domain of  `f_1(x) = arcsin (x/2).`   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

    2. Find the maximal domain of  `f_2(x) = 3/sqrt (25x^2-1).`   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    3. Find the largest set of values of  `x in R`  for which  `f(x)`  is defined.   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

  1. Given that  `h(x) = f(x) + g(x)`  and that  `theta = h(1/4)`, evaluate  `sin (theta).`

     

    Give your answer in the form  `(a sqrt b)/c, \ a, b, c in Z.`   (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `-2 <= x <= 2`
    2. `x < -1/5 uu x > 1/5`
    3. `-2 <= x < -1/5 uu 1/5 < x <= 2`
  1. `(5 sqrt 7)/16`
Show Worked Solution

a.i.   `text(Maximal Domain occurs when:)`

  `-1 <= x/2 <= 1`
  `{x: -2 <= x <= 2}`

 
a.ii.
   `text(Maximal Domain occurs when:)`

♦♦ Mean mark part (a)(ii) 33%.

  `25x^2-1 > 0`
  `x^2 > 1/25`
  `{x: x < -1/5 uu x > 1/5}`

 

a.iii.  `text(Max domain for which)\ \ f(x)\ \ text(is defined:)`

♦♦ Mean mark part (a)(iii) 26%.

  `(-2 <= x <= 2) nn (x < -1/5 uu x > 1/5)`
  `{x: -2 <= x < -1/5 \ uu \ 1/5 < x <= 2}`

 

b.    `h(x)` `= sin^(-1) (x/2) + 3/sqrt(25x^2-1) + sin^(-1)(3x)-3/sqrt(25x^2-1)`
    `= sin^(-1)(x/2) + sin^(-1)(3x)`

 
`text(When)\ \ x=1/4,\ \ h(x)=theta`

♦♦♦ Mean mark part (b) 20%.

`theta=sin^(-1) (1/8) + sin^(-1) (3/4)`

`text(Let)\ \ theta_1 = sin^(-1) (1/8),\ \ theta_2 = sin^(-1) (3/4)`

`text(Using)\ \ sin(theta_1 + theta_2)=sin theta_1 cos theta_2 + cos theta_1 sin theta_2:`

`sin(theta)` `= 1/8 * sqrt7/4 + sqrt63/8 * 3/4`
  `=sqrt7/32 + (9sqrt7)/32`
  `=(5 sqrt7)/16`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, Band 5, Band 6, smc-1153-10-arcsin

Graphs, SPEC2 2013 VCAA 1 MC

The domain of the function with rule  `f(x) = arcsin(3x)` is

  1. `[−1,1]`
  2. `[−3,3]`
  3. `[0,pi/3]`
  4. `[−1/3,1/3]`
  5. `[−pi/6,pi/6]`
Show Answers Only

`D`

Show Worked Solution
`−1 <=` `3x` `<= 1`
`−1/3 <=` `x` `<= 1/3`

 
`=> D`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 3, smc-1153-10-arcsin

Calculus, SPEC2 2018 VCAA 1

Consider the function  `f: D -> R`, where  `f(x) = 2 text(arcsin)(x^2-1)`.

  1. Determine the maximal domain `D` and the range of  `f`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of  `y = f(x)`  on the axes below, labelling any endpoints and the `y`-intercept with their coordinates.  (3 marks)

    --- 0 WORK AREA LINES (style=lined) ---


      

    `qquad` 
     

  3. Find  `f^{′}(x)`  for  `x > 0`, expressing your answer in the form  `f^{′}(x) = A/sqrt(2-x^2), \ A in R`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. Write down  `f^{′}(x)`  for  `x < 0`, expressing your answer in the form  `f^{′}(x) = B/sqrt(2-x^2), \ B in R`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  5. The derivative  `f^{′}(x)`  can be expressed in the form  `f^{′}(x) = {g(x)}/sqrt(2-x^2)` over its maximal domain.
  1. Find the maximal domain of  `f^{′}`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find  `g(x)`, expressing your answer as a piecewise (hybrid) function.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Sketch the graph of  `g` on the axes below.  (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---


     

Show Answers Only

  1. `D [- sqrt 2 , sqrt 2]; qquad f(x) in [-pi, pi]`
  2. `text(See Worked Solutions)`
  3. `4/sqrt(2-x^2)`
  4. `(-4)/sqrt(2-x^2)`
    1. `x in (-sqrt2, 0) ∪ (0, sqrt 2)`
    2. `g(x) = {(-4text(,), x < 0), (\ \ \ 4text(,), x > 0):}`
    3. `text(See Worked Solutions)`

Show Worked Solution

a.   `-1 <= x^2-1 <= 1`

`=>\ 0 <= x^2<= 1`

`=>\ -sqrt2 <= x <=sqrt2`

`:.\ text(Domain:)\ [- sqrt 2 , sqrt 2]`

 

`sin^(-1)(x) in [-pi/2, pi/2]`

`=> 2 sin^(-1)(x) in [-2xx pi/2, 2 xx pi/2]`

`:.\ text(Range:)\ [-pi, pi]`

 

b.   

 

c.   `f(x) = 2 sin^(-1)(x^2-1)`

`f(x)` `=2 sin^(-1)(x^2-1)`

 
`:. f^{′}(x)= 4/sqrt(2-x^2)\ \ \ (x > 0,\ \ text(by CAS))`

 

d.    `f^{′}(x)` `= (4x)/sqrt(x^2(2-x^2))`
    `= (-4)/sqrt(2-x^2)\ \ \ (x < 0)`

 

e.i.  `f^{′}(x)\ \ text(is defined when:)`

♦♦ Mean mark part (e)(i) 21%.

`2-x^2 > 0\ \ and\ \ x!=0`

`:. x in (-sqrt2, 0) ∪ (0, sqrt 2)`

 

e.ii.  `g(x) = +- 4`

♦ Mean mark part (e)(ii) 49%, part (e)(iii) 48%.

`:.  g(x) = {(-4text(,), x < 0), (\ \ \ 4text(,), x > 0):}`

 

e.iii.   

Filed Under: Inverse Trig Functions (SM), Tangents and Curve Sketching Tagged With: Band 3, Band 4, Band 5, smc-1153-10-arcsin

Graphs, SPEC2 2015 VCAA 2 MC

The range of the function with rule  `f(x) = (2 - x)arcsin(x/2 - 1)`  is

A.   `[-pi,0]`

B.   `[-pi/2,pi/2]`

C.   `[-((2 - x)pi)/2,((2 - x)pi)/2]`

D.   `[0,4]`

E.   `[0,pi]`

Show Answers Only

`A`

Show Worked Solution

`text(By CAS, create a graph of)\ \ f(x) = (2 – x)sin^(-1)(x/2 – 1).`

`=> A`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-10-arcsin

Graphs, SPEC2 2014 VCAA 4 MC

The domain of  `arcsin(2x - 1)`  is

A.   `[−1,1]`

B.   `[−1,0]`

C.   `[0,1]`

D.   `[−1/2,1/2]`

E.   `[0,1/2]`

Show Answers Only

`C`

Show Worked Solution

`text(For)\ arcsin(2x – 1), −1 <= 2x – 1<= 1`

`:. 0 <= x <= 1`

`=> C`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 3, smc-1153-10-arcsin

Algebra, SPEC2 2018 VCAA 2 MC

Consider the function  `f` with rule  `f(x) = 1/sqrt(sin^(-1)(cx + d))`, where  `c, d in R`  and  `c > 0`.

The domain of  `f` is

A.  `x > -d/c`

B.  `-d/c < x <= (1 - d)/c`

C.  `(-1 - d)/c <= x <= (1 - d)/c`

D. `x in R\ text(\) {-d/c}`

E.  `x in R` 

Show Answers Only

`B`

Show Worked Solution
`cx + d` `in [-1, 1]`
`cx` `in [-1-d, 1-d]`
`x` `in [(-1-d)/c, (1 – d)/c]\ \ …\ (1)`

 

`sin^(-1) (cx + d)` `> 0`
`cx + d` `>0`
`cx` `> -d`
`x` `> -d/c\ \ …\ (2)`

 

`(1) nn (2):`

`x in (-d/c, (1 – d)/c]`

 
`=>  B`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-10-arcsin

Copyright © 2014–2025 SmarterEd.com.au · Log in