SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2022 VCAA 1

Consider the family of functions \(f\) with rule  \(f(x)=\dfrac{x^2}{x-k}\), where \(k \in R \backslash\{0\}\).

  1. Write down the equations of the two asymptotes of the graph of \(f\) when \(k=1\).   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of  \(y=f(x)\)  for  \(k=1\)  on the set of axes below. Clearly label any turning points with their coordinates and label any asymptotes with their equations.   (3 marks)
     

--- 0 WORK AREA LINES (style=lined) ---

  1.  i. Find, in terms of \(k\), the equations of the asymptotes of the graph of  \(f(x)=\dfrac{x^2}{x-k}\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. ii. Find the distance between the two turning points of the graph of  \(f(x)=\dfrac{x^2}{x-k}\) in terms of \(k\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Now consider the functions \(h\) and \(g\), where  \(h(x)=x+3\)  and  \(g(x)=\abs{\dfrac{x^2}{x-1}}\).
  4. The region bounded by the curves of \(h\) and \(g\) is rotated about the \(x\)-axis.
    1. Write down the definite integral that can be used to find the volume of the resulting solid.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    2. Hence, find the volume of this solid. Give your answer correct to two decimal places.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.  \(\text {Asymptotes: } x=1,\  y=x+1\)

b.   
       

c.i.   \(\text {Asymptotes: } x=k,\  y=x+k\)

c.ii.  \(\text {Distance }=2 \sqrt{5}|k|\)

d.i.  \(\displaystyle V=\pi \int_{\frac{-\sqrt{7}-1}{2}}^{\frac{\sqrt{7}-1}{2}}(x+3)^2-\left(\frac{x^2}{x-1}\right)^2 dx\)

d.ii.  \(V=51.42\ \text{u}^3 \)

Show Worked Solution

a.    \(\text {When } k=1 :\)

\(f(x)=\dfrac{x^2}{x-1}=\dfrac{(x+1)(x-1)+1}{(x-1)}=x+1+\dfrac{1}{x-1}\)

\(\text {Asymptotes: } x=1,\  y=x+1\)
 

b.    
       

 

c.i. \(f(x)=\dfrac{x^2}{x-k}=\dfrac{(x+k)(x-k)+k^2}{x-k}=x+k+\dfrac{k^2}{x-k}\)

\(\text {Using part a.}\)

\(\text {Asymptotes: } x=k,\  y=x+k\)
 

c.ii.  \(f^{\prime}(x)=1-\left(\dfrac{k}{x-k}\right)^2\)

\(\text {TP’s when } f^{\prime}(x)=0 \text { (by CAS):}\)

\(\Rightarrow(2 k, 4 k),(0,0)\)

\(\text {Distance }\displaystyle=\sqrt{(2 k-0)^2+(4 k-0)^2}=\sqrt{20 k^2}=2 \sqrt{5}|k|\)
 

d.i  \(\text {Solve for intersection of graphs (by CAS):}\)

\(\displaystyle x+3=\left|\frac{x^2}{x-1}\right|\)

\(\displaystyle \Rightarrow x=\frac{3}{2}, x=\frac{-1 \pm \sqrt{7}}{2}\)

\(\displaystyle V=\pi \int_{\frac{-\sqrt{7}-1}{2}}^{\frac{\sqrt{7}-1}{2}}(x+3)^2-\left(\frac{x^2}{x-1}\right)^2 dx\)
 

d.ii. \(V=51.42\ \text{u}^3 \text{ (by CAS) }\)

♦♦ Mean mark (d)(ii) 37%.

Filed Under: Partial Fractions, Quotient and Other Functions (SM), Solids of Revolution Tagged With: Band 3, Band 4, Band 5, smc-1154-10-Quotient functions/Asymptotes, smc-1154-30-Absolute value, smc-1154-50-Sketch graph, smc-1180-40-Other graphs, smc-1180-50-x-axis rotations

Functions, SPEC1 2023 VCAA 1

Consider the function \(f\) with rule  \(f(x)=\dfrac{x^2+x-6}{x-1}\).

  1. Show that the rule for the function \(f\) can be written as  \(f(x)=x+2-\dfrac{4}{x-1}\).   (1 mark)

--- 6 WORK AREA LINES (style=lined) ---

  1. Sketch the graph of \(f\) on the axes below, labelling any asymptotes with their equations.   (3 marks)

   

--- 0 WORK AREA LINES (style=blank) ---

Show Answers Only
a.     \(f(x)\) \(=\dfrac{x^2+x-6}{x-1}\)
    \(=\dfrac{(x-1)(x+2)-4}{x-1}\)
    \(=x+2-\dfrac{4}{x-1} \)

 
b.
    \(\text{Asymptotes at:}\ x=1, \ y=x+2 \)

\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -3 & -1 & 0 & 1 & 2 \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & 0 & 3 & 6 & \infty & 0 \\
\hline
\end{array}

 

Show Worked Solution
a.     \(f(x)\) \(=\dfrac{x^2+x-6}{x-1}\)
    \(=\dfrac{(x-1)(x+2)-4}{x-1}\)
    \(=x+2-\dfrac{4}{x-1} \)

 
b.
    \(\text{Asymptotes at:}\ x=1, \ y=x+2 \)

\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -3 & -1 & 0 & 1 & 2 \\
\hline
\rule{0pt}{2.5ex} y \rule[-1ex]{0pt}{0pt} & 0 & 3 & 6 & \infty & 0 \\
\hline
\end{array}

 

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 3, Band 4, smc-1154-10-Quotient functions/Asymptotes, smc-1154-50-Sketch graph

Calculus, SPEC2 2021 VCAA 1

Let  `f(x) = ((2x-3)(x + 5))/((x-1)(x + 2))`.

  1. Express `f(x)` in the form  `A + (Bx + C)/((x-1)(x + 2))`, where `A`, `B` an `C` are real constants.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. State the equation of the asymptotes of the graph of `f`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch the graph of `f` on the set of axes below. Label the asymptotes with their equations, and label the maximum turning point and the point of inflection with their coordinates, correct to two decimal places. Label the intercepts with the coordinate axes.   (3 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

     

  4. Let  `g_k(x) = ((2x-3)(x + 5))/((x-k)(x + 2))`, where `k` is a real constant.
  5.  i. For what values of `k` will the graph of `g_k`, have two asymptotes?   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  6. ii. Given that the graph of `g_k` has more than two asymptotes, for what values of `k` will the graph of `g_k` have no stationary points?   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `f(x) = 2 + (5x-11)/((x-1)(x + 2))`
  2. `text(Horizontal asymptote:)\ y = 2`

  3.  
  4.  i. `k = 3/2 => g_k(x) = 2 + 6/(x + 2)`
  5. ii. `k , -5\ \ text(or)\ \ k > 3/2`
Show Worked Solution

a.   `text{By CAS  (prop Frac}\ f(x)):`

`f(x) = 2 + (5x-11)/((x-1)(x + 2))`
 

b.   `text(Vertical asymptotes:)\ x = 1, x = –2`

`text(As)\ \ x -> ∞, y -> 2`

`text(Horizontal asymptote:)\ y = 2`

♦ Mean mark part (c) 48%.

 
c.
   

 

d.i.   `text(Two asymptotes only when:)`

♦♦ Mean mark part (d)(i) 24%.

`k = -2 \ => \ g_k(x) = 2-(23 + x)/((x + 2)^2)`

`k = -5 \ => \ g_k(x) = 2-7/(x + 2)`

`k = 3/2 \ => \ g_k(x) = 2 + 6/(x + 2)`

 

d.ii.   `text(By CAS, solve)\ \ d/(dx)(g_k(x)) = 0\ \ text(for)\ \ x:`

♦♦♦ Mean mark part (d)(ii) 16%.

`x = (-4k + 15 ± sqrt(-21(2k^2 + 7k-15)))/(2k + 3)`
 

`text(No solutions occur when:)`

`k = -3/2\ \ text(or)`

`2k^2 + 7k-15 < 0`

`=> k < -5\ \ text(or)\ \ k > 3/2`

Filed Under: Partial Fractions, Quotient and Other Functions (SM), Tangents and Curve Sketching Tagged With: Band 4, Band 5, Band 6, smc-1154-20-Partial fractions, smc-1154-50-Sketch graph, smc-1182-35-Sketch curve, smc-1182-40-Other 1st/2nd deriv problems

Graphs, SPEC1 2018 VCAA 5

Sketch the graph of  `f(x) = (x + 1)/(x^2 - 4)`  on the axes provided below, labelling any asymptotes with their equations and any intercepts with their coordinates.  (4 marks)

Show Answers Only

Show Worked Solution

`text(Using partial fractions:)`

`(x + 1)/(x^2 – 4)= A/(x – 2) + B/(x + 2)`

`A(x + 2) + B (x – 2) = x + 1`

 
`text(When)\ \ x = 2,`

`4A` `= 3 => \ A=3/4`

 
`text(When)\ \ x = -2`

`-4B` `= -1 =>\ B=1/4`

 
`f(x)= 1/(4(x + 2)) + 3/(4(x – 2))`
 

`text(As)\ \ x->oo, \ f(x)->0^+`

`text(As)\ \ x->- oo, \ f(x)->0^-`

`f(0)= – 1/4`
 

`text(Find)\ x\ text(when)\ \ f(x)=0:`

`x + 1` `= 0`
`x` `= -1`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 4, smc-1154-10-Quotient functions/Asymptotes, smc-1154-50-Sketch graph

Copyright © 2014–2025 SmarterEd.com.au · Log in