For the complex polynomial `P(z) = z^3 + az^2 + bz + c` with real coefficients `a, b` and `c, P(−2) = 0` and `P(3i) = 0`.
The values of `a, b` and `c` are respectively
- `− 2, 9,− 18`
- `3, 4, 12`
- `2, 9, 18`
- `−3, −4, 12`
- `2, −9, −18`
Aussie Maths & Science Teachers: Save your time with SmarterEd
For the complex polynomial `P(z) = z^3 + az^2 + bz + c` with real coefficients `a, b` and `c, P(−2) = 0` and `P(3i) = 0`.
The values of `a, b` and `c` are respectively
`C`
`text(S)text(ince coefficients are real,)`
`P(3i) = 0 => P(−3i) = 0\ \ (text(conjugate root theorem))`
`P(z)` | `= (z + 2)(z – 3i)(z + 3i)` |
`= z^3 + 2z^2 + 9z + 18` |
`:. a = 2, b = 9, c = 18`
`=> C`
Find the cube roots of `1/sqrt 2 - 1/sqrt 2 i`. Express your answers in polar form using principal values of the argument. (3 marks)
`z_1 = text(cis)((7 pi)/12)`
`z_2 = text(cis)(-pi/12)`
`z_3 = text(cis)((-3 pi)/4)`
`z^3 = 1/sqrt 2 – 1/sqrt 2 i = text(cis)(-pi/4) = text(cis)(-pi/4 + 2 pi k), k ∈ Z`
`text(By De Moivre):`
`z = text(cis)(-pi/12 + (2 pi k)/3)`
`text(If)\ \ k = 1, \ z_1 = text(cis)(-pi/12 + (2 pi)/3) = text(cis)((7 pi)/12)`
`text(If)\ \ k = 0, \ z_2 = text(cis)(-pi/12)`
`text(If)\ \ k = – 1, \ z_3= text(cis)(-pi/12 – (2pi)/3) = text(cis)((-3 pi)/4)`
A cubic polynomial has the form `p(z) = z^3 + bz^2 + cz + d, \ z ∈ C`, where `b, c, d ∈ R`.
Given that a solution of `p(z) = 0` is `z_1 = 3 - 2i` and that `p(–2) = 0`, find the values of `b, c` and `d`. (4 marks)
`b =-4 \ , \ c = 1 \ , \ d = 26`
`text(Roots:)\ \ z_1 = 3 – 2i \ , \ z_2 = 3 + 2i \ , \ z_3 = -2`
`p(z)` | `= (z – 3 + 2i )(z – 3 – 2i )(z + 2)` |
`= ((z-3)^2 – (2i)^2)(z+2)` | |
`= (z^2 – 6z + 9 + 4)(z + 2)` | |
`= (z^2 – 6z + 13)(z + 2)` | |
`= z^3 + 2z^2 – 6z^2 – 12z + 13z + 26` | |
`= z^3 – 4z^2 + z + 26` |
`:. \ b =-4 \ , \ c = 1 \ , \ d = 26`
On the argand diagram below, the twelve points `P_1, P_2, P_3 …, P_12` are evenly spaced around the circle of radius 3.
The points which represent complex numbers such that `z^3 = -27i` are
A. `P_10` only
B. `P_4` only
C. `P_2, P_6, P_10`
D. `P_3, P_7, P_11`
E. `P_4, P_8, P_12`
`E`
`z^3 = 27text(cis)(−pi/2)`
`:. z_1 = 3text(cis)(−pi/6)\ \ text(is one root.)`
`text(The other two are evenly spaced around the circle)`
`text(which separates them by)\ \ (2pi)/3.`
`=> E`
Consider the equation `z^3 - z^2 - 2z - 12 = 0, \ z in C.`
a. `text(Given)\ \ z = 2 text(cis)((2 pi)/3)\ \ text(is a root, and)`
`z^3 – z^2 – 2z – 12 = 0\ \ text(has real coefficients,)`
`=> z= 2 text(cis)(-(2 pi)/3)\ \ text{is a root (conjugate).}`
`=> text(Roots:)\ \ -1+sqrt3i,\ \ -1-sqrt3i`
`(z – alpha) (z – beta) (z – gamma) = z^3 – z^2 – 2z – 12`
`text(Using)\ \ alpha beta gamma = 12:`
`(-1 + i sqrt 3) (-1 – i sqrt 3) gamma` | `=12` | |
`((-1)^2-(sqrt3i)^2)gamma` | `=12` | |
`4gamma` | `=12` | |
`gamma` | `=3` |
`:.\ text(Other two roots:)`
`z_2` | `= -1 – i sqrt 3` |
`z_3` | `= 3 + 0i` |
b. |
One of the roots of `z^3 + bz^2 + cz = 0` is `3 - 2i`, where `b` and `c` are real numbers.
The values of `b` and `c` respectively are
A. `6, 13`
B. `3, -2`
C. `-3, 2`
D. `2, 3`
E. `-6, 13`
`E`
`z(z^2 + bz + c) = 0,\ b, c in RR`
`text(Given)\ \ z= 3 – 2i \ \ text(is a root,)`
`=> z = 3 + 2i\ \ text{is a root (conjugate).}`
`z(z^2 + bz + c)` | `= 0` |
`z((z – 3) + 2i)((z – 3) – 2i)` | `= 0` |
`z((z – 3)^2 – 4i^2)` | `= 0` |
`z(z^2 – 6z + 9 + 4)` | `= 0` |
`z^3 – 6z^2 + 13z` | `= 0` |
`b = -6,\ \ c = 13`
`=> E`
One root of a quadratic equation with real coefficients is `sqrt 3 + i`.
Find the equation of this circle, expressing it in the form `|z - alpha| = beta`, where `alpha, beta in R`. (3 marks)
a.i. `z_1 = sqrt 3 + i`
`z_2 = bar z_1 = sqrt 3 – i\ \ \ text{(conjugate root)}`
a.ii. | `(z – (sqrt 3 + i))(z – (sqrt 3 – i))` | `= 0` |
`((z – sqrt 3) – i)((z – sqrt 3) + i)` | `= 0` | |
`(z – sqrt 3)^2 – i^2` | `= 0` | |
`z^2 – 2 sqrt 3 z + 3 + 1` | `= 0` | |
`z^2 – 2 sqrt 3 z + 4` | `= 0` |
b. | `z(z^2 – 2 sqrt 3 z + 4)` | `= 0` |
`z(z – (sqrt 3 + i))(z – (sqrt 3 – i))` | `= 0` |
`text(Convert to polar form:)`
`sqrt 3 + i` | `= sqrt((sqrt 3)^2 + 1^2) * text(cis) (tan^(-1)(1/sqrt 3))` | |
`= 2 text(cis) (pi/6)` | ||
`=> sqrt 3 – i` | `= 2 text(cis) (-pi/6)` |
c. `text(Equidistant from)\ (0, 0) and (sqrt 3, 1)`
`text(Midpoint)\ (x_1, y_1)` | `= (sqrt 3/2, 1/2)` |
`m = (1 – 0)/(sqrt 3 – 0) = 1/sqrt 3`
`m_(_|_) = (-1)/m = -sqrt 3`
`:.\ text(Equation of ⊥ bisector:)`
`y-1/2` | `=-sqrt3(x-sqrt3/2)` | |
`y` | `=-sqrt3 x +3/2+1/2` | |
`:.y` | `=-sqrt3 x +2` |
d. `text(Let)\ O = (0, 0),\ P = (sqrt 3, 1),\ Q = (sqrt 3, -1)`
`text(⊥ bisector of two points on arc of a circle passes)`
`text(through the centre of the circle.)`
`OP = OQ = PQ = 2`
`=> Delta OPQ\ text(is equilateral)`
`text(⊥ bisector of)\ PQ\ text(is)\ y=0.`
`text(Centre of circle occurs when:)`
`0 = -sqrt 3 x + 2\ \ text{(using part c)`
`x=2/sqrt3`
`=>\ text(Radius)\ = 2/sqrt3`
`:. |z – 2/sqrt 3| = 2/sqrt 3`
Find the values of `a` and `b` given that `z - 1 - i` is a factor of `z^3 + (a + b)z^2 + (b^2 - a)z - 4 = 0`, where `a` and `b` are real constants. (4 marks)
`(a, b) = (-5, 1) or (-2, -2)`
`text(All coefficients are real):`
`=> z – 1 + i \ \ text{is a factor (conjugate pair)}`
`(z – 1 – i) (z – 1 + i)` | `= ((z – 1) – i)((z – 1) + i)` |
`= (z – 1)^2 – i^2` | |
`= z^2 – 2z + 1 + 1` | |
`= z^2 – 2z + 2` |
`(z – alpha)(z^2 – 2z + 2)`
`=z^3 -2z^2 + 2z -alpha z^2 +2 alpha z – 2 alpha, \ \ \ alpha in RR`
`=z^3 + (-alpha – 2)z^2 + (2 alpha + 2)z – 2 alpha`
`= z^3 + (a + b)z^2 + (b^2 – a) z – 4`
`text(Equating coefficients:)`
`2 alpha = -4 \ \ =>\ \ alpha = 2`
`a + b = -4 \ \ …\ (1)`
`b^2 – a = 6 \ \ …\ (2)`
`text{Substitute}\ \ a=-b-4\ \ text{from (1) into (2):}`
`b^2 – (-4 – b)` | `= 6` |
`b^2 + b + 4` | `= 6` |
`b^2 + b – 2` | `=0` |
`(b + 2)(b – 1)` | `=0` |
`b = 1\ \ => \ \ a=-5, \ text(or)`
`b=-2\ \ => \ \ a = -4 + 2=-2`
`:. (a, b) = (-5, 1) or (-2, -2)`
a. `z^3 = 8text(cis)(pi/2)`
`z_1` | `= 8^(1/3)text(cis)(pi/6)` |
`= 2text(cis)(pi/6)` | |
`= sqrt3 + i` | |
`z_2` | `= 2text(cis)(pi/6 + (2pi)/3)` |
`= 2text(cis)((5pi)/6)` | |
`= −sqrt3 + i` | |
`z_3` | `= 2text(cis)(pi/6 – (2pi)/3)` |
`= 2text(cis)(−pi/2)` | |
`= −2i` |
`:. z = sqrt3 + i, \ −sqrt3 + i, \ −2i`
b. | `z_1 – 2i` | `= sqrt3 + i` |
`z_1` | `= sqrt3 + 3i` | |
`z_2 – 2i` | `= −sqrt3 + i` |
`z_2` | `= −sqrt3 + 3i` |
`z_3 – 2i` | `= −2i` |
`z_3` | `= 0` |
`:. z = sqrt3 + 3i, \ −sqrt3 + 3i, \ 0`
The sum of the roots of `z^3 - 5z^2 + 11z - 7 = 0`, where `z ∈ C`, is
`E`
`text(Coefficients are real)`
`=>\ text(Conjugate root theorem applies.)`
`z_1=alpha + beta i,\ \ z_2=alpha – beta i, \ \ z_3=gamma`
`z_1+z_2+z_3` | `= alpha + beta i + alpha – beta i + gamma` |
`= 2 alpha + gamma\ \ \ (∈R)` |
`=> E`
Let `z^3 + az^2 + 6z + a = 0, \ z ∈ C`, where `a` is a real constant.
Given that `z = 1 - i` is a solution to the equation, find all other solutions. (3 marks)
`z_2` | `= 1 + i` |
`z_3` | `= 2` |
`z_1 = 1 – i`
`=>\ z_2 = 1 + i\ \ text{(conjugate pair)}`
`=>\ z_3 ∈ R`
`z^3 + az^a + 6z + a`
`= (z – z_1)(z – z_2)(z – z_3)` | |
`= (z – (1 – i))(z – (1 + i))(z – z_3)` | |
`= ((z – 1) + i)((z – 1) – i)(z – z_3)` | |
`= ((z – 1)^2 – i^2)(z – z_3)` | |
`= (z^2 – 2z + 1 + 1)(z – z_3)` | |
`= (z^2 – 2z + 2)(z – z_3)` | |
`= z^3 – (z + z_3)z^2 + (2z_3 + 2)z – 2z_3` |
`text(Equating the co-efficients of)\ \ z:`
`6` | `= 2z_3 + 2` |
`4` | `= 2z_3` |
`z_3` | `= 2` |
`:.\ text(Other solutions are:)`
`z_2` | `= 1 + i` |
`z_3` | `= 2` |
Given that `(z - 3i)` is a factor of `P(z) = z^3 + 2z^2 + 9z + 18`, which one of the following statements is false?
`D`
`z – 3i\ \ text(is a factor) \ => \ z + 3i\ text(is a factor)`
`text(deg) (P) = 3`
`text(Complex roots occur in conjugate pairs.)`
`text(S)text(ince 3 roots → 3rd root must be real.)`
`=> D`