The acceleration of a body moving in a plane is given by \(\underset{\sim}{\ddot{\text{r}}}(t)=\sin(t)\underset{\sim}{\text{i}}+2 \cos(t)\underset{\sim}{\text{j}}\), where \(t \ge 0\).
Given that \(\underset{\sim}{\dot{\text{r}}}(0)=2\underset{\sim}{\text{i}}+\underset{\sim}{\text{j}}\), the velocity of the body at time \(t, \underset{\sim}{\dot{\text{r}}}(t)\), is given by
- \(-\cos (t) \underset{\sim}{\text{i}}+2 \sin (t) \underset{\sim}{\text{j}}\)
- \((3-\cos (t)) \underset{\sim}{\text{i}}+(2 \sin (t)+1) \underset{\sim}{\text{j}}\)
- \((1+\cos (t)) \underset{\sim}{\text{i}}+(2\sin (t)+1) \underset{\sim}{\text{j}}\)
- \((2+\sin (t)) \underset{\sim}{\text{i}}+(2\cos (t)-1) \underset{\sim}{\text{j}}\)
- \((1+\cos (t)) \underset{\sim}{\text{i}}+(1-2\sin (t)) \underset{\sim}{\text{j}}\)