SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2011 VCAA 16 MC

The gradient of the the perpendicular line to a curve at any point  `P(x,y)`  is twice the gradient of the line joining `P` and the point  `Q(1,1)`.

The coordinate of points on the curve satisfy the differential equation

  1. `(dy)/(dx) + (x - 1)/(2(y - 1)) = 0`
  2. `(dy)/(dx) - (x - 1)/(2(y - 1)) = 0`
  3. `(dy)/(dx) + (2(y - 1))/(x - 1) = 0`
  4. `(dy)/(dx) + (2(x - 1))/(y - 1) = 0`
  5. `(dy)/(dx) - (2(y - 1))/(x - 1) = 0`
Show Answers Only

`A`

Show Worked Solution

`m_T = dy/dx`

♦♦♦ Mean mark 25%.
COMMENT: Easily the lowest mean mark in the 2011 MC section.

`m_⊥ = −1/(m_T) = – (dx)/(dy)`

`m_(PQ) = (y-1)/(x-1)`

`- (dx)/(dy)` `= 2m_(PQ)`
`-(dx)/(dy)` `= (2(y-1))/(x-1)`
`- (dy)/(dx)` `= (x – 1)/(2(y-1))`
`0` `=dy/dx + (x – 1)/(2(y-1))`

 
`=> A`

Filed Under: Tangents and Curve Sketching Tagged With: Band 6, smc-1182-30-Normal

Calculus, SPEC1 2016 VCAA 3

Find the equation of the line perpendicular to the graph of  `cos (y) + y sin(x) = x^2`  at  `(0, -pi/2)`.  (4 marks)

Show Answers Only

`y_N = (-2)/pi x – pi/2`

Show Worked Solution

`d/(dx) (cos(y)) + d/(dx) (y sin(x)) = d/(dx) (x^2)`

`-sin(y) *(dy)/(dx) + sin(x) *(dy)/(dx) + y cos (x) = 2x`

`dy/dx(sin(x)-sin(y))` `=2x-ycos(x)`  
`dy/dx` `=(2x-ycos(x))/(sin(x)-sin(y))`  

 
`dy/dx |_(x=0, y=pi/2) =(0-(pi/2)(1))/(0-1)=pi/2`

`m_T = pi/2\ \ =>\ \ m_⊥ = (-2)/pi`
 

`:.\ text(Equation of ⊥ line:)`

`y – ((-pi)/2)` `=(-2)/pi (x-0)`  
`y` `=((-2)/pi) x – pi/2`  

Filed Under: Tangents and Curve Sketching Tagged With: Band 4, smc-1182-30-Normal, smc-1182-50-Implicit functions

Calculus, SPEC1 2014 VCAA 4

Find the gradient of the line perpendicular to the tangent to the curve defined by  `y = -3e^(3x) e^y`  at the point  `(1, -3)`.  (3 marks)

Show Answers Only

`4/9`

Show Worked Solution
`(dy)/(dx)` `= -3 d/(dx) (e^(3x) e^y)`
`(dy)/(dx)` `= -9e^(3x) e^y + -3 e^(3x) e^y (dy)/(dx)`
` -9e^(3x) e^y` `=(dy)/(dx) (1 + 3e^(3x) e^y)`
`(dy)/(dx)` `= (-9e^(3x) e^y)/(1 + 3e^(3x) e^(-3))`

 

`text{At  (1, –3):}`  
`:. m_text(norm)` `= (1 + 3e^(3 xx 1) e^(-3))/(9e^(3 xx 1) e^(-3))`
  `= (1 + 3e^3 e^(-3))/(9e^3 e^(-3))`
  `= 4/9`

Filed Under: Tangents and Curve Sketching Tagged With: Band 4, smc-1182-30-Normal, smc-1182-50-Implicit functions

Calculus, SPEC2-NHT 2018 VCAA 7 MC

The gradient of the line that is perpendicular to the graph of the relation  `3y^2 - 5xy - x^2 = 1`  at the point  `(1, 2)`  is

A.  `-1/12`

B.      `12/7`

C.       `21`

D.   `-7/12`

E.   `-7/13`

Show Answers Only

`D`

Show Worked Solution
`6y *(dy)/(dx) – (5y + 5x* (dy)/(dx)) – 2x` `= 0`
`6y *(dy)/(dx) – 5x *(dy)/(dx)` `= 2x + 5y`
`6 xx 2 xx m_T – 5 xx 1 xx m_T` `= 2 xx 1 + 5 xx 2`
`(12 – 5)m_T` `= 12`
`7 m_T` `= 12`
`m_T` `= 12/7`

 `:.m_N = -7/12`

`=>  D`

Filed Under: Tangents and Curve Sketching Tagged With: Band 3, smc-1182-30-Normal, smc-1182-50-Implicit functions

Copyright © 2014–2025 SmarterEd.com.au · Log in