SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2022 VCAA 3

A particle moves in a straight line so that its distance, \(x\) metres, from a fixed origin \(O\) after time \(t\) seconds is given by the differential equation \(\dfrac{d x}{d t}=\dfrac{2 e^{-x}}{1+4 t^2}\), where  \(x=0\)  when  \(t=0\).

  1.  i. Express the differential equation in the form \(\displaystyle \int g(x)dx=\int f(t)dt\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. ii. Hence, show that  \(x=\log _e\left(\tan ^{-1}(2 t)+1\right)\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. The graph of  \(x=\log _e\left(\tan ^{-1}(2 t)+1\right)\) has a horizontal asymptote.
    1. Write down the equation of this asymptote.   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    2. Sketch the graph of  \(x=\log _e\left(\tan ^{-1}(2 t)+1\right)\) and the horizontal asymptote on the axes below. Using coordinates, plot and label the point where  \(t=10\), giving the value of \(x\) correct to two decimal places.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

  1. Find the speed of the particle when  \(t=3\). Give your answer in metres per second, correct to two decimal places.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Two seconds after the first particle passed through \(O\), a second particle passes through \(O\).

Its distance \(x\) metres from \(O, t\) seconds after the first particle passed through \(O\), is given by  \(x=\log _e\left(\tan ^{-1}(3 t-6)+1\right).\)

  1. Verify that the particles are the same distance from \(O\) when  \(t=6\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find the ratio of the speed of the first particle to the speed of the second particle when the particles are at the same distance from \(O\). Give your answer as \(\dfrac{a}{b}\) in simplest form, where \(a\) and \(b\) are positive integers.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.i.  \(\displaystyle\int e^x d x=\int \frac{2}{1+4 t^2}\,dt\)

a.ii.  \(x=\log _e\left(\tan ^{-1}(2 t)+1\right) \)

b.i.   \(\text{Asymptote: }\  x=\log _e\left(\dfrac{\pi}{2}+1\right)\)

b.ii. 
           

c.    \(0.02\)

d.   \(\text {Particle positions at}\ \ t=6:\)

\(x_1=\log _e\left(\tan ^{-1}(2 \times 6)+1\right)=\log _e\left(\tan ^{-1}(12)+1\right)\)

\(x_2=\log _e\left(\tan ^{-1}(3 \times 6-6)+1\right)=\log _e\left(\tan ^{-1}(12)+1\right)=x_1\)

e.    \(\dfrac{v_1}{v_2}=\dfrac{2}{3}\)

Show Worked Solution

a.i.  \(\dfrac{d x}{d t}=\dfrac{2 e^{-x}}{1+4 t^2}\)

 \(\displaystyle\int e^x d x=\int \frac{2}{1+4 t^2}\,dt\)
  

a.ii. \(e^x=\tan ^{-1}(2 t)+c\)

\(\text {When}\ \ t=0, \ x=0 \ \Rightarrow \ c=1\)

\begin{aligned}
e^x& =\tan ^{-1}(2 t)+1 \\
x&=\log _e\left(\tan ^{-1}(2 t)+1\right)
\end{aligned}

 
b.i.
\(\text {As}\ \ t \rightarrow \infty, \ \tan ^{-1}(2 t) \rightarrow \dfrac{\pi}{2}\)

\(x \rightarrow \log _e\left(\dfrac{\pi}{2}+1\right)\)

\(\therefore \text{Asymptote: }\  x=\log _e\left(\dfrac{\pi}{2}+1\right)\)

♦♦♦ Mean mark 23%.

 
b.ii.
\(\log _e\left(\dfrac{\pi}{2}+1\right) \approx 0.944\)

\(\text{When}\ \ t=10 :\)

\(x=\log _e\left( \tan ^{-1}(20)+1\right)=0.92\ \text{(2 d.p.)}\)
 

c.    \(\text {At}\ \  t=3, x=\log _e\left(\tan ^{-1}(6)+1\right)\)

\(\text {Substitute } t \text { and } x \text { into } \dfrac{d x}{d t}:\)

\(\dfrac{d x}{d t}=\dfrac{2 e^{-x}}{1+4 t^2}=0.02\, \text{ms} ^{-1}\ \text{(2 d.p.)}\)
 

d.   \(\text {Particle positions at}\ \ t=6:\)

\(x_1=\log _e\left(\tan ^{-1}(2 \times 6)+1\right)=\log _e\left(\tan ^{-1}(12)+1\right)\)

\(x_2=\log _e\left(\tan ^{-1}(3 \times 6-6)+1\right)=\log _e\left(\tan ^{-1}(12)+1\right)=x_1\)
 

e.    \(e^x=e^{\log _e\left(\tan ^{-1}(12)+1\right)}=\tan ^{-1}(12)+1\)

\(\text {At}\ \ t=6:\)

\(\dfrac{d x_1}{d t}=\dfrac{2}{1+4 t^2} \times \dfrac{1}{\tan ^{-1}(2 t)+1}=\dfrac{2}{145\left(\tan ^{-1}(12)+1\right)}\)

\(\dfrac{d x^2}{d t}=\dfrac{3}{1+(3 t-6)^2} \times \dfrac{1}{\tan ^{-1}(3 t-6)-1}=\dfrac{3}{145\left(\tan ^{-1}(12)+1\right)}\)

\(\therefore \dfrac{v_1}{v_2}=\dfrac{2}{3}\)

Filed Under: Applied Contexts Tagged With: Band 3, Band 4, Band 6, smc-1184-75-Motion

Calculus, SPEC1 2021 VCAA 7

The velocity of a particle satisfies the differential equation  `(dx)/(dt) = xsin(t)`,  where  `x`  centimetres is its displacement relative to a fixed point `O` at time `t` seconds.

Initially, the displacement of the particle is 1 cm.

  1. Find an expression for `x` in terms of `t`.   (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2. Find the maximum displacement of the particle and the times at which this occurs.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x = e^(1-cos(t))`
  2. `x_text(max) = e^2\ \ text(when)\ \ t = pi, 3pi, 5pi, …`

     

    `text(or)\ t = (2k + 1)pi\ \ text(for)\ \ k ∈ Z^+ ∪ {0}`

Show Worked Solution
a.    `(dx)/(dt)` `= x sin(t)`
  `int 1/x\ dx` `= int sin(t)\ dt`
  `log_e x` `= -cos(t) + c`

 

`text(When)\ \ t = 0, x = 1`

`log_e 1` `= -cos0 + c`
`c` `= 1`
`log_e x` `= -cos(t) + 1`
`:. x` `= e^(1-cos(t))`

 

b.    `x` `= e^(1-cos(t))`
  `(dx)/(dt)` `= sin(t) · e^(1-cos(t))`

`text(Find)\ \ t\ \ text(when)\ \ (dx)/(dt) = 0:`

♦♦ Mean mark part (b) 25%.

`e^(1-cos(t)) != 0`

`sin(t) = 0\ \ text(when)\ \ t = 0, pi, 2pi, …`

`x_text(max) = e^2\ \ text(when)\ \ t = pi, 3pi, 5pi, …`

`text(or)\ \ t = (2k + 1)pi\ \ text(for)\ \ k ∈ Z^+ ∪ {0}`

Filed Under: Applied Contexts Tagged With: Band 4, Band 5, smc-1184-75-Motion

Copyright © 2014–2025 SmarterEd.com.au · Log in