Solve \(\sin x-\cos x=0 \quad-\pi \leqslant x \leqslant \pi\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve \(\sin x-\cos x=0 \quad-\pi \leqslant x \leqslant \pi\) (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(x=\dfrac{\pi}{4}, -\dfrac{3\pi}{4}\)
\(\sin x-\cos x\) | \(=0\) | |
\(\dfrac{\sin x}{\cos x}-\dfrac{\cos x}{\cos x}\) | \(=0\) | |
\(\tan x-1\) | \(=0\) | |
\(\tan x\) | \(=1\) | |
\(x\) | \(=\tan ^{-1}(1)\) |
\(\therefore x=\dfrac{\pi}{4}, -\dfrac{3\pi}{4}\)
Which of the following is equivalent to `sin^2 5x` ?
`B`
`text(Using the identity:)`
`sin^2 5x + cos^2 5x` | `= 1` |
`sin^2 5x` | `= 1 – cos^2 5x` |
`=> B`
Find all solutions of the equation `2 cos theta = sqrt 3 cot theta`, for `0<=theta<=2pi` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`theta=pi/3, pi/2, (2pi)/3, (3pi)/2`
`2 cos theta = sqrt 3 cot theta`
`2 cos theta – sqrt 3 cot theta` | `= 0` | |
`2 cos theta – sqrt 3 (cos theta)/(sin theta)` | `=0` | |
`(2 – sqrt 3/sin theta) cos theta` | `=0` |
`text(If)\ \ cos theta=0,`
`theta=pi/2, (3pi)/2`
`text(If)\ \ 2 – sqrt 3/sin theta = 0\ \ =>\ \ sin theta = sqrt 3/2`
`theta = pi/3, (2pi)/3`
The domain of the function with rule `f(x) = 1 - sec(x + pi/4)` is
`C`
`y = sec (x)=1/cos(x)\ \ text(has asymptotes when)`
`x = −pi/2, pi/2, (3pi)/2, …`
`=> y = sec (x + pi/4)\ \ text(has asymptotes at when)`
`x = (−3pi)/4, pi/4, (5pi)/4, …`
`:.\ text(Domain:)\ {((4k + 1)pi)/4}, (text{for}\ k\ text{integer}) `
`=>C`
Solve `2 sin x cos x = sin x` for `0 <= x <= 2pi`. (3 marks)
`x = 0, quad pi/3, quad pi, quad (5 pi)/3`
`2 sin x cos x – sin x` | `= 0` |
`sin x (2 cos x – 1)` | `= 0` |
`sin x` | `= 0` |
`=> x` | `= 0,\ pi,\ 2pi` |
`cos x` | `= 1/2` |
`=> x` | `= pi/3, (5 pi)/3` |
`:. x = 0, quad pi/3, quad pi, quad (5 pi)/3,quad 2pi`
Let `(tantheta - 1) (sin theta - sqrt 3 cos theta) (sin theta + sqrt 3 costheta) = 0`.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `(tantheta – 1) (sin theta – sqrt 3 cos theta) (sin theta + sqrt 3 costheta) = 0`
`=> tan theta = 1`
`=>sin theta – sqrt 3 cos theta` | `=0` |
`sin theta` | `=sqrt3 cos theta` |
`tan theta` | `=sqrt3` |
`=>sin theta + sqrt 3 cos theta` | `=0` |
`sin theta` | `=-sqrt3 cos theta` |
`tan theta` | `=-sqrt3` |
`:. tan theta = 1 or tan theta = +- sqrt 3`
ii. `(tan theta – 1) (sin^2 theta – 3 cos^2 theta) = 0`
`text(Using part a:)`
`(tan theta – 1) (sin theta – sqrt 3 cos theta) (sin theta + sqrt 3 cos theta) = 0`
`=> tan theta` | `= 1` | `qquad or qquad` | `tan theta` | `= +- sqrt 3` |
`theta` | `= pi/4` | `theta` | `= pi/3, (2 pi)/3` |
`:. theta = pi/4, pi/3 or (2 pi)/3\ \ \ \ (0<=theta<=pi)`
Solve the equation `sqrt 3 sin x = cos x` for `– pi<=x<= pi`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`x = pi/6,\ \ \ – (5 pi)/6`
`text(Divide both sides by)\ \ cos x :`
`sqrt 3 sin x` | `=cos x` |
`sqrt 3 tan x` | `= 1` |
`tan x` | `= 1/sqrt 3` |
`=>\ text(Base angle)\ = pi/6` |
`:. x = pi/6\ \ text(or)\ – (5 pi)/6,\ \ \ (– pi <=x<= pi)`
Express `5cot^2 x - 2text(cosec)\ x + 2` in terms of `text(cosec)\ x` and hence solve
`5cot^2 x - 2text(cosec)\ x + 2 = 0` for `0 < x < 2pi`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = pi/2`
`cot^2 x` | `= (cos^2 x)/(sin^2 x)` |
`= (1 – sin^2 x)/(sin^2 x)` | |
`= text(cosec)^2 x – 1` |
`5cot^2 x – 2text(cosec)\ x + 2` | `= 0` |
`5(text(cosec)^2 x – 1) – 2text(cosec)\ x + 2` | `= 0` |
`5text(cosec)^2 x – 2text(cosec)\ x – 3` | `= 0` |
`(5text(cosec)\ x + 3)(text(cosec)\ x – 1)` | `= 0` |
`text(cosec)\ x` | `= −3/5` | `text(cosec)\ x` | `= 1` |
`sinx` | `= −5/3` | `sinx` | `= 1` |
`(text(no solution))` | `x` | `= pi/2` |
`:. x = pi/2`
How many solutions does the equation `|\ cos (2x)\ | = 1` have for `0 <= x <= 2 pi?`
`D`
`|\ cos (2x)\ | = 1`
`cos (2x) = +- 1`
`text(When)\ \ cos (2x)` | `= 1` |
`2x` | `= 0, 2pi, 4 pi, …` |
`:. x` | `= 0, pi, 2 pi, …` |
`text(When)\ \ cos (2x)` | `= – 1` |
`2x` | `= pi, 3 pi, 5 pi, …` |
`:. x` | `= pi/2, (3 pi)/2, (5 pi)/2, …` |
`:. x = 0, pi/2, pi, (3 pi)/2, 2 pi\ \ \ text(for)\ \ \ 0 <= x <= 2pi`
`=> D`
Consider the geometric series `1 − tan^2 theta + tan^4 theta − …`
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `1 − tan^2 theta + tan^4 theta − …`
`=>\ text(GP where)\ \ a=1,\ \ r=T_2/T_1= − tan^2 theta`
`:. S_∞` | `= 1/(1 − (−tan^2 theta))` |
`= 1/(1 + tan^2 theta)` | |
`= 1/(sec^2 theta)` | |
`= cos^2 theta` |
ii. | `text(Find)\ \ theta\ \ text(such that)\ \ \ |\ r\ |` | `< 1` |
`|−tan^2 theta\ |` | `< 1` | |
` tan^2 theta` | `< 1` | |
`−1 < tan theta` | `< 1` | |
`:. − pi/4 < theta` | `< pi/4` |
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Prove)\ \ cos theta tan theta = sin theta`
`text(LHS)` | `= cos theta tan theta` |
`= cos theta ((sin theta)/(cos theta))` | |
`= sin theta` | |
`=\ text{RHS}` |
ii. | `8 sin theta cos theta tan theta` | `= text(cosec)\ theta` |
`:. 8 sin theta(sin theta)` | `= text(cosec)\ theta,\ \ \ \ text{(part (i))}` | |
`8 sin^2 theta` | `= 1/(sin theta)` | |
`8 sin^3 theta` | `= 1` | |
`sin^3 theta` | `= 1/8` | |
`sin theta` | `= 1/2` | |
`:. theta` | `= pi/6, (5pi)/6.\ \ \ \ text{(for}\ \ 0 ≤ theta ≤ 2pi text{)}` |
Find all solutions of `2 sin^2 x + cos x − 2 = 0`, where `0 <= x <= 2pi`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = pi/3,\ pi/2,\ (3pi)/2,\ (5pi)/3`
`2 sin^2 x + cos x\ – 2` | `= 0` |
`2(1\ – cos^2x) + cos x\ – 2` | `= 0` |
`2\ – 2cos^2x + cosx\ – 2` | `= 0` |
`-2cos^2x + cosx` | `= 0` |
`cosx (-2 cosx + 1)` | `= 0` |
`:. -2 cosx + 1` | `= 0` | `\ text(or)\ \ \ \ \ \ \ ` | `cos x` | `= 0` |
`2 cos x` | `= 1` | `x` | `= pi/2,\ (3pi)/2` | |
`cos x` | `= 1/2` | |||
`cos(pi/3)` | `=1/2` |
`text(S)text(ince cos is positive in)\ 1^text(st) // 4^text(th)\ text(quadrants,)`
`x` | `= pi/3,\ 2 pi \ – pi/3` |
`= pi/3,\ (5pi)/3` |
`:. x = pi/3,\ pi/2,\ (3pi)/2,\ (5pi)/3\ \ text(for)\ \ 0 <= x <= 2pi`
How many solutions of the equation `(sin x - 1)(tan x + 2) = 0` lie between `0` and `2 pi`?
`B`
`text(When)\ (sin x\ – 1)(tan x + 2) = 0`
`(sinx\ – 1) = 0\ \ text(or)\ \ tan x + 2 = 0`
`text(If)\ \ sin x\ – 1` | `= 0` |
`sin x` | `= 1` |
`x` | `= pi/2,\ \ \ 0 < x < 2 pi` |
`text(If)\ \ tan x + 2` | `= 0` |
`tan x` | `= -2` |
`=>\ text(Note that since)\ \ tan\ pi/2\ \ text(is undefined, there)`
`text(are only 2 solutions when)\ \ tan x = -2`
`text{(which occurs in the 1st and 4th quadrants).}`
`:.\ 2\ text(solutions)`
`=> B`
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`int_0^(pi/4) 1/(1 - sinx)\ dx`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Need to prove)`
`sec^2x + secxtanx = (1 + sinx)/(cos^2x)`
`text(LHS)` | `=sec^2x + secx tanx` |
`=1/(cos^2x) + 1/(cosx) xx (sinx)/cosx` | |
`=1/(cos^2x) + (sinx)/(cos^2x)` | |
`=(1 + sinx)/(cos^2x)` | |
`= text(RHS)\ \ \ \ text(… as required)` |
ii. `text(Need to prove)`
`sec^2x + secx tanx` | `= 1/(1\ – sinx)` |
`text(i.e.)\ \ (1 + sinx)/(cos^2x)` | `= 1/(1\ – sin x)\ \ \ \ \ text{(part (i))}` |
`text(LHS)` | `= (1 + sinx)/(cos^2x)` |
`=(1 + sin x)/(1\ – sin^2x)` | |
`=(1 + sinx)/((1\ – sinx)(1 + sinx)` | |
`=1/(1\ – sinx)\ \ \ \ text(… as required)` |
iii. `int_0^(pi/4) 1/(1\ – sinx)\ dx`
`= int_0^(pi/4) (sec^2x + secx tanx)\ dx`
`= [tanx + secx]_0^(pi/4)`
`= [(tan(pi/4) + sec(pi/4)) – (tan0 + sec0)]`
`= [(1 + 1/(cos(pi/4)))\ – (0 + 1/(cos0))]`
`= 1 + sqrt2\ – 1`
`= sqrt2`