Find \(\displaystyle \int \dfrac{5}{\sqrt{7-x^2-6 x}} \, dx\). (2 marks)
--- 5 WORK AREA LINES (style=blank) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find \(\displaystyle \int \dfrac{5}{\sqrt{7-x^2-6 x}} \, dx\). (2 marks)
--- 5 WORK AREA LINES (style=blank) ---
\(5\,\sin^{-1} \left( \dfrac{x+3}{4} \right) +c\)
| \(\displaystyle \int \dfrac{5}{\sqrt{7-x^2-6 x}} \, dx\) | \(=\displaystyle \int \dfrac{5}{\sqrt{16-(x^2+6x+9)}} \, dx\) | |
| \(=\displaystyle \int \dfrac{5}{\sqrt{16-(x+3)^2}} \, dx\) | ||
| \(=5\,\sin^{-1} \left( \dfrac{x+3}{4} \right) +c\) |
Find \({\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\). (3 marks) --- 8 WORK AREA LINES (style=lined) --- \(I=\sqrt{5-4x-x^2} + 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \) \( \dfrac{du}{dx}=-4-2x\ \ \Rightarrow\ \ du=-4-2x\ dx \)
\(I\)
\(={\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\)
\(= \dfrac{1}{2} {\displaystyle \int \frac{2-2x}{\sqrt{5-4 x-x^2}}\ dx}\)
\(=\dfrac{1}{2} {\displaystyle \int \frac{-4-2x}{\sqrt{5-4 x-x^2}}\ dx} + \dfrac{1}{2} {\displaystyle \int \frac{6}{\sqrt{5-4 x-x^2}}\ dx}\)
\(\text{Let}\ \ u=5-4x-x^2 \)
\(I\)
\(= \dfrac{1}{2} {\displaystyle \int u^{-\frac{1}{2}}\ du} + {\displaystyle 3 \int \frac{1}{\sqrt{9-(x+2)^2}}\ dx}\)
\(= u^{\frac{1}{2}} + 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)
\(= \sqrt{5-4x-x^2}+ 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)
Evaluate `intsin^(3)2x\ cos 2x\ dx`. (2 marks)
`1/8sin^(4)2x+c`
| `intsin^(3)2x\ cos 2x\ dx` | `=int 1/8 xx 4 xx 2cos2x xx sin^3 2x\ dx` | |
| `=1/8sin^(4)2x+c` |
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. | `e^(i n theta) + e^(-i n theta)` | `= cos(n theta) + i sin(n theta) + cos(-n theta) + i sin(-n theta)` |
| `= cos(n theta) + i sin(n theta) + cos(n theta) – i sin(n theta)` | ||
| `= 2 cos (n theta)` |
| ii. | `(e^{i theta} + e^{-i theta})^4` | `= (2 cos theta)^4` |
| `= 16 cos^4 theta` |
`text{Expand} \ (e^{i theta} + e^{-i theta})^4 :`
`e^(i 4 theta) + 4 e^(i 3 theta) e^(-i theta) + 6 e^(i 2 theta) e^(-i 2 theta) + 4 e^(i theta) e^(-i 3 theta) + e^(-i 4 theta)`
`= e^(i 4 theta) + 4e^(i 2 theta) + 6 + 4^(-i 2 theta) + e^(-i 4 theta)`
`= e^(i 4 theta) + e^(i 4 theta) + 4 (e^{i 2 theta} + e^{-i 2 theta}) + 6`
`= 2 cos (4 theta) + 8 cos (2 theta) + 6`
| `therefore \ 16 cos^4 theta` | `= 2 cos (4 theta) + 8 cos (2 theta) + 6` |
| `cos^4 theta` | `= frac{1}{8} cos(4 theta) + 1/2 cos(2 theta) + 3/8` |
| `cos^4 theta` | `= frac{1}{8} (cos(4 theta) + 4 cos(2 theta) + 3)` |
| iii. | `int_0^(frac{pi}{2}) cos^4 theta\ d theta` | `= frac{1}{8} int_0^(frac{pi}{2}) cos(4 theta) + 4 cos(2 theta) + 3\ d theta` |
| `= frac{1}{8} [ frac{1}{4} sin(4 theta) + 2 sin (2 theta) + 3 theta ]_0^(frac{pi}{2}` | ||
| `= frac{1}{8} [( frac{1}{4} sin (2 pi) + 2 sin pi + frac{3 pi}{2}) – 0 ]` | ||
| `= frac{1}{8} ( frac{3 pi}{2})` | ||
| `= frac{3 pi}{16}` |
By completing the square, find `int (dx)/(sqrt (5+4x-x^2))` . (2 marks)
`sin^-1((x-2)/(3))+C`
| `int(dx)/(sqrt(5+4x-x^2))` | `=int(dx)/(sqrt(9-(x^2-4x+4)))` |
| `=int(dx)/(sqrt(3^2-(x-2)^2)` | |
| `=sin^-1((x-2)/(3))+C` |
Which of the following is a primitive of `(sin x)/(cos^3 x)`?
`A`
`text(Solution 1)`
| `int(sin x)/(cos^3 x)` | `= int sinx cos^(-3) x\ dx` |
| `=1/2 cos^(-2)x + C` | |
| `= 1/2 sec^2 x + C` |
`text(Solution 2)`
| `int(sin x)/(cos^3 x)` | `= int tanx sec^2x\ dx` |
| `= 1/2 tan^2 + C_1` | |
| `= 1/2 (sec^2 x -1) + C_1` | |
| `=1/2 sec^2 x + C_2` |
`=>A`
Which expression is equal to `int 1/(sqrt(1 - 4x^2))\ dx`?
`text(B)`
`d/dx (1/2 sin^(−1)2x + C) = 1/sqrt(1 – 4x^2)`
`=>\ text(B)`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `d/(d theta) (sin^(n – 1) theta cos theta)`
`=(n – 1) sin^(n – 2) theta cos theta cos theta + sin^(n – 1) theta xx (-sin theta)`
`=(n – 1) sin^(n – 2) theta cos^2 theta – sin^n theta`
`=(n – 1) sin^(n – 2) theta (1 – sin^2 theta) – sin^n theta`
`=(n – 1) sin^(n – 2) theta – (n – 1) sin^n theta – sin^n theta`
`=(n – 1) sin^(n – 2) theta – n sin^n theta`
ii. `text{From part (i)}`
`n sin^n theta = (n – 1) sin^(n – 2) theta – d/(d theta) (sin^(n – 1) theta cos theta)`
`:. int_0^(pi/2) sin^n theta\ d theta`
`=1/n int_0^(pi/2) ((n – 1) sin^(n – 2) theta – d/(d theta) (sin^(n – 1) theta cos theta)) d theta`
`=1/n int_0^(pi/2) (n – 1) sin^(n – 2) theta\ d theta – 1/n int_0^(pi/2) d/(d theta) (sin^(n – 1) theta cos theta)\ d theta`
`= 1/n int_0^(pi/2) (n – 1) sin^(n – 2) theta\ d theta – 1/n int_0^(pi/2) d/(d theta) (sin^(n – 1) theta cos theta)\ d theta`
`= (n – 1)/n int_0^(pi/2) sin^(n – 2) theta\ d theta – 1/n [sin^(n – 1) theta cos theta]_0^(pi/2)`
`= (n – 1)/n int_0^(pi/2) sin^(n – 2) theta\ d theta – 1/n (0 – 0)`
`= (n – 1)/n int_0^(pi/2) sin^(n – 2) theta\ d theta,\ \ \ \ (n>1)`
| iii. | `int_0^(pi/2) sin^4 theta\ d theta` | `= 3/4 int_0^(pi/2) sin^2 theta\ d theta` |
| `= 3/4 xx [(2-1)/2 int_0^(pi/2) d theta]` | ||
| `= 3/8 xx [theta]_0^(pi/2)` | ||
| `= (3 pi)/16` |
Find `int 1/sqrt (9 - 4x^2)\ dx.` (2 marks)
`1/2 sin^-1 (2x)/3 + c`
| `int (dx)/sqrt (9 – 4x^2)` | `=1/2 int (dx)/sqrt (9/4 – x^2)` |
| `=1/2 sin^-1 x/(3/2) + c` | |
| `=1/2 sin^-1 (2x)/3 + c` |
Let `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`
`text(When)\ \ x = 1,\ \ u = 3`
`text(When)\ \ x = 3,\ \ u = 1`
| `I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx` |
| `=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)` | |
| `=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du` | |
| `=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du` |
ii. `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`
`text(We can add the integrals such that)`
| `2I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx` |
| `=int_1^3 1/(x(4-x)) dx` |
`text(Using partial fractions:)`
| `1/(x(4-x))` | `=A/x+B/(4-x)` |
| `1` | `=A(4-x)+Bx` |
`text(When)\ \ x=0,\ \ A=1/4`
`text(When)\ \ x=0,\ \ B=1/4`
| `2I` | `=1/4 int_1^3 (1/x + 1/(4-x))\ dx` |
| `=1/4 [log_e x-log_e (4-x)]_1^3` | |
| `=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]` | |
| `=1/2 log_e 3` | |
| `:.I` | `=1/4 log_e 3` |
Find `int cos^3 theta\ d theta` (3 marks)
`sin theta-(sin^3 theta)/3 + c`
| `int cos^3 theta\ d theta` | `= int cos^2 theta cos theta\ d theta` |
| `= int (1-sin^2 theta) cos theta\ d theta` | |
| `= int (cos theta-sin^2 theta cos theta) d theta` | |
| `= sin theta-(sin^3 theta)/3 + c` |