Find \({\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\). (3 marks) --- 8 WORK AREA LINES (style=lined) --- \(I=\sqrt{5-4x-x^2} + 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \) \( \dfrac{du}{dx}=-4-2x\ \ \Rightarrow\ \ du=-4-2x\ dx \)
\(I\)
\(={\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\)
\(= \dfrac{1}{2} {\displaystyle \int \frac{2-2x}{\sqrt{5-4 x-x^2}}\ dx}\)
\(=\dfrac{1}{2} {\displaystyle \int \frac{-4-2x}{\sqrt{5-4 x-x^2}}\ dx} + \dfrac{1}{2} {\displaystyle \int \frac{6}{\sqrt{5-4 x-x^2}}\ dx}\)
\(\text{Let}\ \ u=5-4x-x^2 \)
\(I\)
\(= \dfrac{1}{2} {\displaystyle \int u^{-\frac{1}{2}}\ du} + {\displaystyle 3 \int \frac{1}{\sqrt{9-(x+2)^2}}\ dx}\)
\(= u^{\frac{1}{2}} + 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)
\(= \sqrt{5-4x-x^2}+ 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)
Calculus, EXT2 C1 2023 HSC 13a
Find \({\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\). (3 marks) --- 8 WORK AREA LINES (style=lined) ---