SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT2 V1 2025 HSC 13b

Let  \(\underset{\sim}{c}=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}\)  be a unit vector that is perpendicular to both  \(\underset{\sim}{a}=2 \underset{\sim}{i}+4 \underset{\sim}{j}-3 \underset{\sim}{k}\)  and  \(\underset{\sim}{b}=-4 \underset{\sim}{i}-5 \underset{\sim}{j}+3 \underset{\sim}{k}\).

Find all possible vectors \(\underset{\sim}{c}\).   (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\underset{\sim}{c}= \pm \dfrac{1}{3}(\underset{\sim}{i}-2\underset{\sim}{j}-2 \underset{\sim}{k})\)

Show Worked Solution

\(\underset{\sim}{c} \cdot \underset{\sim}{a}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\left(\begin{array}{c}2 \\ 4 \\ -3\end{array}\right)=2 x+4 y-3 z=0\ \ldots\ (1)\)

\(\underset{\sim}{c} \cdot \underset{\sim}{b}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\left(\begin{array}{c}-4 \\ -5 \\ 3\end{array}\right)=-4 x-5 y+3 z=0\ \ldots\ (2)\)

\(\text{Given} \ \ \abs{\underset{\sim}{c}}=1:\)

\(x^2+y^2+z^2=1\ \ldots\ (3)\)
 

\(\text{Add}\ \ (1)+(2):\)

\(-2 x-y=0 \ \ \Rightarrow\ \ y=-2 x\)
 

\(\text{Substitute}\ \ y=-2 x \ \ \text{into (1):}\)

\(-6 x-3 z=0 \ \ \Rightarrow\ \ z=-2 x\)
 

\(\text{Substituting into (3):}\)

\(x^2+4 x^2+4 x^2=1\ \ \Rightarrow\ \ x^2=\dfrac{1}{9}\ \ \Rightarrow\ \ x= \pm \dfrac{1}{3}\)

\(\underset{\sim}{c}\) \(=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}\)
  \(= \pm \dfrac{1}{3}(\underset{\sim}{i}-2\underset{\sim}{j}-2 \underset{\sim}{k})\)

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 4, smc-1195-30-Perpendicular Vectors, smc-1195-40-Unit Vectors and Projections

Vectors, EXT2 V1 2024 HSC 10 MC

Three unit vectors \(\underset{\sim}{a}, \underset{\sim}{b}\) and \(\underset{\sim}{c}\), in 3 dimensions, are to be chosen so that  \(\underset{\sim}{a} \perp \underset{\sim}{b}, \ \underset{\sim}{b} \perp \underset{\sim}{c}\)  and the angle \(\theta\) between \(\underset{\sim}{a}\) and  \(\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}\)  is as small as possible.

What is the value of \(\cos \theta\) ?

  1. \(0\)
  2. \(\dfrac{1}{\sqrt{3}}\)
  3. \(\dfrac{1}{\sqrt{2}}\)
  4. \(\dfrac{2}{\sqrt{5}}\)
Show Answers Only

\(D\)

Show Worked Solution

\(\cos \theta=\dfrac{\underset{\sim}{a} \cdot(\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c})}{\abs{\underset{\sim}{a}}\abs{\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}}}\)

♦♦♦ Mean mark 25%.

\(\theta_{\text{min}} \ \Rightarrow \ \cos\,\theta_{\text{max}}:\)

\(\underset{\sim}{a} \cdot\left(\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}\right)=\abs{\underset{\sim}{a}}^2+\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{a} \cdot \underset{\sim}{c}=1+\underset{\sim}{a} \cdot \underset{\sim}{c}\)

\(\text{Find}\ \ \abs{\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}}:\)

  \(\abs{\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c}}^2\) \(=\abs{\underset{\sim}{a}}^2+\abs{\underset{\sim}{b}}^2+\abs{\underset{\sim}{c}}^2+2\left(\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{b} \cdot \underset{\sim}{c}+\underset{\sim}{a} \cdot \underset{\sim}{c}\right)\)
    \(=3+2 \underset{\sim}{a} \cdot \underset{\sim}{c}\)

 
\(\cos \theta=\dfrac{1+a \cdot c}{\sqrt{3+2 a \cdot c}}\)

\(\underset{\sim}{a} \cdot\underset{\sim}{c}=\abs{\underset{\sim}{a}}\abs{\underset{\sim}{c}} \cos\, \alpha = \cos\,\alpha \)

\(0 \leqslant \cos\, \alpha \, \leqslant 1\)

\(\therefore \cos \theta_{\text{max}}=\dfrac{2}{\sqrt{5}}\)

\(\Rightarrow D\)

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 6, smc-1195-20-Angles Between Vectors, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 2024 HSC 12a

The vector \(\underset{\sim}{a}\) is \(\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\) and the vector \(\underset{\sim}{b}\) is \(\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)\).

  1. Find \(\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\, \underset{\sim}{b}\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Show that  \(\underset{\sim}{a}-\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\, \underset{\sim}{b}\)  is perpendicular to \(\underset{\sim}{b}\).  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

1.     \(\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)\)

ii.    \(\underset{\sim}{a}-\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\, \underset{\sim}{b}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\)

\( \left(\underset{\sim}{a}-\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\underset{\sim}{b}\right)\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right) = -2+0+2=0\)

\(\therefore\ \text {Vectors are perpendicular.}\)

Show Worked Solution

i.    \(\underset{\sim}{a}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \quad \underset{\sim}{b}=\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)\)
 

\(\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\, \underset{\sim}{b}=\dfrac{2+0-12}{4+0+16}\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)=-\dfrac{1}{2}\left(\begin{array}{c}2 \\ 0 \\ -4\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)\)

 
ii.
    \(\underset{\sim}{a}-\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\, \underset{\sim}{b}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\)
 

\( \left(\underset{\sim}{a}-\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\underset{\sim}{b} \cdot \underset{\sim}{b}}\,\underset{\sim}{b}\right)\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right) = -2+0+2=0\)

 
\(\therefore\ \text{Vectors are perpendicular.}\)

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 2, Band 3, smc-1195-30-Perpendicular Vectors, smc-1195-40-Unit Vectors and Projections

Vectors, EXT2 V1 2024 HSC 1 MC

Which of the following vectors is perpendicular to  \(3 \underset{\sim}{i}+2 \underset{\sim}{j}-5 \underset{\sim}{k}\) ?

  1. \(-\underset{\sim}{i}-\underset{\sim}{j}+\underset{\sim}{k}\)
  2. \(\underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k}\)
  3. \(-2 \underset{\sim}{i}+3 \underset{\sim}{j}+\underset{\sim}{k}\)
  4. \( 3 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Consider option}\ D:\)

\[\underset{\sim}{a} \cdot \underset{\sim}{b}=\left(\begin{array}{c} 3 \\ 2 \\ -5 \end{array}\right) \left(\begin{array}{c} 3 \\ -2 \\ 1 \end{array}\right) = 9-4-5=0 \]

\(\Rightarrow D\)

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 2022 SPEC2 12 MC

Consider the vectors  \(\underset{\sim}{\text{u}}(x)=-\text{cosec}(x) \underset{\sim}{\text{i}}+\sqrt{3} \underset{\sim}{\text{j}}\)  and  \(\underset{\sim}{\text{v}}(x)=\text{cos}(x) \underset{\sim}{\text{i}}+\underset{\sim}{\text{j}}\).

If \(\underset{\sim}{\text{u}}(x)\) is perpendicular to \(\underset{\sim}{\text{v}}(x)\), then possible values for \(x\) are

  1. \(\dfrac{\pi}{6}\) and \(\dfrac{7 \pi}{6}\)
  2. \(\dfrac{\pi}{3}\) and \(\dfrac{4 \pi}{3}\)
  3. \(\dfrac{5 \pi}{6}\) and \(\dfrac{11 \pi}{6}\)
  4. \(\dfrac{2 \pi}{3}\) and \(\dfrac{5 \pi}{3}\)
Show Answers Only

\(A\)

Show Worked Solution

\(\underset{\sim}{u} \perp \underset{\sim}{v} \ \Rightarrow \ \underset{\sim}{u} \cdot \underset{\sim}{v}=0\)

\(-\text{cosec}(x) \cos (x)+\sqrt{3}=0\)

\begin{aligned}
-\dfrac{\cos (x)}{\sin (x)}+\sqrt{3} & =0 \\
\tan (x) & =\dfrac{1}{\sqrt{3}}
\end{aligned}

\(x=\dfrac{\pi}{6}, \dfrac{7 \pi}{6}\)

\(\Rightarrow A\)

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 4, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 EQ-Bank 1

Prove that the vectors  `4 underset ~i + 5 underset ~j - 2 underset ~k`  and  ` −5 underset ~i + 6 underset ~j + 5underset ~k`, are perpendicular. (2 marks)

Show Answers Only

`text{See Worked Solution}`

Show Worked Solution
`underset ~a ⋅ underset ~b` `= ((4),(5),(-2))((-5),(6),(5))`
  `=4 xx (−5) + 5 xx 6 + (−2) xx 5`
  `= -20+30+10`
  `=0`

 
`text(S)text(ince)\ \ underset ~a ⋅ underset ~b =0 \ =>\ \ underset ~a _|_ underset ~b`

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 2, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 2020 HSC 11d

Consider the two vectors  `underset~u = 2 underset~i - underset~j + 3 underset~k`  and  `underset~v = p underset~i +  underset~j + 2 underset~k`.
 
For what values of  `p`  are  `underset~u - underset~v`  and  `underset~u + underset~v`  perpendicular?   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`p= ± 3`

Show Worked Solution

`underset~u – underset~v = ((-2),(-1),(3)) – ((p),(1),(2)) = ((-2 – p),(-2),(1))`
 

`underset~u + underset~v = ((-2),(-1),(3)) + ((p),(1),(2)) = ((p – 2),(0),(5))`
 

`⊥ \ text{when} \ \ (underset~u – underset~v) · (underset~u + underset~v ) = 0 :`
 

`((-2 – p),(-2),(1)) · ((p – 2),(0),(5)) = 0`
 

`-(p + 2)(p-2) + 5` `= 0`
`-(p^2 – 4) + 5` `= 0`
`-p^2 + 9` `= 0`
`p^2` `= 9`
`p` `= ± 3`

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 2014 SPEC1 1

Consider the vector  `underset ~a = sqrt 3 underset ~i - underset ~j - sqrt 2 underset ~k`, where  `underset ~i, underset ~j`  and  `underset ~k`  are unit vectors in the positive directions of the `x, y` and `z` axes respectively.

  1.  Find the unit vector in the direction of  `underset ~a`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  Find the acute angle that  `underset ~a`  makes with the positive direction of the `x`-axis.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3.  The vector  `underset ~b = 2 sqrt 3 underset ~i + m underset ~j - 5 underset ~k`.

     

     Given that  `underset ~b`  is perpendicular to  `underset ~a,` find the value of `m`.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)`
  2. `theta = 45^@`
  3. `m = 6 + 5 sqrt 2`
Show Worked Solution
i.    `|underset ~a|` `= sqrt((sqrt 3)^2 + (-1)^2 + (-sqrt 2)^2)`
    `= sqrt 6`
`:. hat underset ~a` `= underset ~a/|underset ~a|`
  `= 1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)`

 

Mean mark part (b) 51%.

ii.    `underset ~a ⋅ underset ~i` `= sqrt 3 xx 1 = sqrt 3`
  `underset ~a ⋅ underset ~i` `= |underset ~a||underset ~i| cos theta`
    `= sqrt 6 cos theta`
  `sqrt 3` `= sqrt 6 cos theta`
`cos theta` `= 1/sqrt 2`
`:. theta` `= pi/4 = 45^@`

 

iii.   `underset ~a ⋅ underset ~b = sqrt 3 (2 sqrt 3) + (-1)(m) + (-sqrt 2)(-5) = 0`

`6 – m + 5 sqrt 2` `=0`  
`:. m` `=6 + 5 sqrt 2`  

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, Band 4, smc-1195-20-Angles Between Vectors, smc-1195-30-Perpendicular Vectors, smc-1195-40-Unit Vectors and Projections

Vectors, EXT2 V1 2013 SPEC1 3

The coordinates of three points are  `A\ ((– 1), (2), (4)), \ B\ ((1), (0), (5)) and C\ ((3), (5), (2)).`

  1. Find  `vec (AB).`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. The points `A, B` and `C` are the vertices of a triangle. 

     

    Prove that the triangle has a right angle at `A.`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the length of the hypotenuse of the triangle.  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2underset~i – 2underset~j + underset~k`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `sqrt 38`
Show Worked Solution
i.   `vec(AB)` `=(1 – −1)underset~i + (0 – 2)underset~j + (5 – 4)underset~k`
    `= 2underset~i – 2underset~j + underset~k`

 

ii.    `overset(->)(AC)` `= (3 – −1)underset~i + (5 – 2)underset~j + (2 – 4)underset~k`
    `= 4underset~i + 3underset~j – 2underset~k`

 

`overset(->)(AB) · overset(->)(AC)` `= 2 xx 4 + (−2) xx 3 + 1 xx (−2)`
  `= 8 – 6 – 2`
  `= 0`

 
`=>  overset(->)(AB) ⊥ overset(->)(AC)`

`:. DeltaABC\ text(has a right angle at)\ A.`
 

iii.    `overset(->)(BC)` `= (3 – 1)underset~i + (5 – 0)underset~j + (2 – 5)underset~k`
    `= 2underset~i + 5underset~j – 3underset~k`

 

`|overset(->)(BC)|` `= sqrt(2^2 + 5^2 + (−3)^2)`
  `= sqrt(4 + 25 + 9)`
  `= sqrt38`

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, Band 4, smc-1195-10-Basic Calculations, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 SM-Bank 8

If  `underset ~a = -2 underset ~i - underset ~j + 3 underset ~k`  and  `underset ~b = -m underset ~i + underset ~j + 2 underset ~k`, where  `m`  is a real constant, find  `m`  such that the vector  `underset ~a - underset ~b`  will be perpendicular to vector  `underset ~b`.   (2 marks)

Show Answers Only

`0 or 2`

Show Worked Solution
`underset ~a – underset ~b` `= (m – 2) underset ~i – 2 underset ~j + underset ~k `
`(underset ~a – underset ~b) ⋅ underset ~b` `= -m(m – 2) – 2(1) + 1(2) = 0`
`0` `= -m^2 + 2m – 2 + 2`
`0` `= 2m – m^2`
`0` `= m(2 – m)`
`:. m` `= 0 \ or \ 2`

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 4, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 SM-Bank 12

Two vectors are given by  `underset ~a = 4 underset ~i + m underset ~j - 3 underset ~k`  and  `underset ~b = −2 underset ~i + n underset ~j - underset ~k`, where  `m`, `n in R^+`.

If  `|\ underset ~a\ | = 10`  and  `underset ~a`  is perpendicular to  `underset ~b`, then find `m` and `n`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`m=5sqrt3, \ n=sqrt3/3`

Show Worked Solution

`text(Using)\ \ |\ underset ~a\ | = 10:`

`10` `= sqrt(4^2 + m^2 + (-3)^2)`
`100` `=m^2 +25`
`m` `= 5sqrt3`

 
`text(S)text(ince)\ \ underset ~a _|_ underset ~b :`

`underset ~a ⋅ underset ~b` `= 0`
`0` `=4 xx (−2) + mn + (−3) xx (−1)`
`0` `= mn-5`
`n` `=5/(5sqrt3)`
  `=sqrt3/3`

 

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, smc-1195-10-Basic Calculations, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 SM-Bank 5

Find the value(s) of  `m`  so that the vectors  `underset~a = 2underset~i + m underset~j - 3underset~k`  and  `underset~b = m^2underset~i - underset~j + underset~k`  are perpendicular.   (2 marks)

Show Answers Only

`m = 3/2, quad m = -1`

Show Worked Solution

`underset ~a ⊥ underset ~b\ \ =>\ \ underset ~a ⋅ underset ~b=0`

`underset ~a ⋅ underset ~b` `= 2m^2 + m(-1) + (-3)(1)`
`0` `= 2m^2 – m – 3`
`0` `= (2m – 3)(m + 1)`

 
`:. m = 3/2, quad m = -1`

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, smc-1195-30-Perpendicular Vectors

Vectors, EXT2 V1 SM-Bank 4

Consider the three vectors

`underset ~a = underset ~i - underset ~j + 2underset ~k,\ underset ~b = underset ~i + 2 underset ~j + m underset ~k`  and  `underset ~c = underset ~i + underset ~j - underset ~k`, where  `m in R.`

  1. Find the value(s) of `m` for which  `|\ underset ~b\ | = 2 sqrt 3.`  (2 marks)
  2. Find the value of `m` such that  `underset ~a`  is perpendicular to  `underset ~b.`  (1 mark)
Show Answers Only
  1. `+- sqrt 7`
  2. `1/2`
Show Worked Solution
i.    `|underset~b|` `= sqrt(1^2 + 2^2 + m^2)` `= 2sqrt3`
    `1 + 4 + m^2` `= 4 xx 3`
    `m^2` `= 7`
    `m` `= ±sqrt7`

 

ii.    `underset~a * underset~b` `= 1 xx 1 + (−1) xx 2 + 2 xx m`  
  `0` `= 1 – 2 + 2m\ \ ( underset~a ⊥ underset~b)`  
  `2m` `= 1`  
  `m` `= 1/2`  

Filed Under: Basic Concepts and Arithmetic Tagged With: Band 3, smc-1195-10-Basic Calculations, smc-1195-30-Perpendicular Vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in