SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT2 V1 2024 HSC 15a

Consider the three vectors  \(\underset{\sim}{a}=\overrightarrow{O A}, \underset{\sim}{b}=\overrightarrow{O B}\) and \(\underset{\sim}{c}=\overrightarrow{O C}\), where \(O\) is the origin and the points \(A, B\) and \(C\) are all different from each other and the origin.

The point \(M\) is the point such that  \(\dfrac{1}{2}(\underset{\sim}{a}+\underset{\sim}{b})=\overrightarrow{O M}\).

  1. Show that \(M\) lies on the line passing through \(A\) and \(B\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. The point \(G\) is the point such that  \(\dfrac{1}{3}(\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c})=\overrightarrow{O G}\).
  3. Show that \(G\) lies on the line passing through \(M\) and \(C\), and lies between \(M\) and \(C\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. The complex numbers \(x, w\) and \(z\) are all different and all have modulus 1.
  5. Using part (ii), or otherwise, show that  \(\dfrac{1}{3}(x+w+z)\) is never a cube root of \(x w z\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\text{Equation of line through \(A\) and \(B\)}\)

\(\Rightarrow \ell_1=\overrightarrow{O A}+\lambda \overrightarrow{A B}\)

  \(\overrightarrow{O M}\) \(=\dfrac{1}{2} \underset{\sim}{a}+\dfrac{1}{2} \underset{\sim}{b}\)
    \(=\underset{\sim}{a}-\dfrac{1}{2} \underset{\sim}{a}+\dfrac{1}{2} \underset{\sim}{b}\)
    \(=\overrightarrow{O A}+\dfrac{1}{2}(\underset{\sim}{b}-\underset{\sim}{a})\)
    \(=\overrightarrow{O A}+\dfrac{1}{2} \overrightarrow{A B}\)

 
\(\therefore \overrightarrow{OM} \ \text{lies on} \ \ell_1\).
 

ii.    \(\text{Equation of line through \(M\) and \(C\)}\)

\(\Rightarrow \ell_2=\overrightarrow{OC}+\lambda \overrightarrow{CM}\)

  \(\overrightarrow{O G}\) \(=\dfrac{1}{3}(\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c})\)
    \(=\underset{\sim}{c}-\dfrac{2}{3} \underset{\sim}{c}+\dfrac{1}{3} \underset{\sim}{a}+\dfrac{1}{3} \underset{\sim}{b}\)
    \(=\overrightarrow{OC}+\dfrac{2}{3}\left(\dfrac{1}{2} \underset{\sim}{a}+\dfrac{1}{2} \underset{\sim}{b}-\underset{\sim}{c}\right)\)
    \(=\overrightarrow{OC}+\dfrac{2}{3} \overrightarrow{CM}\)

 
\(\therefore \overrightarrow{O G} \ \ \text{lies on} \ \ \ell_2\)

\(\ \ \overrightarrow{O G} \neq \overrightarrow{O C}  \ \ \text{and} \ \ \overrightarrow{O G} \neq \overrightarrow{O M}\)

\(\therefore G \ \ \text{lies between} \ \ C \ \text{and} \ M\).
 

iii.  \(\text{Place}\ x, w,\ \text{and}\ z\ \text{on unit circle.}\)
 

\(\abs{w}=\abs{x}=\abs{z}=1\)

\(\text{Using part (ii):}\)

\(G \equiv \dfrac{1}{3}(x+w+z)\)

\(G \ \text{lies on} \ CM \Rightarrow G \ \text{is inside the unit circle.}\)

\(\Rightarrow\left|\dfrac{1}{3}(x+w+z)\right|<1\)

\(\text{Since}\ \ \abs{xwz}=\abs{x}\abs{w}\abs{z}=1\)

\(\Rightarrow \ \text{All cube roots have modulus = 1.}\)

\(\therefore \dfrac{1}{3}(x+w+z) \ \ \text{cannot be a cube root of  \(xwz\).}\)

Show Worked Solution

i.    \(\text{Equation of line through \(A\) and \(B\)}\)

\(\Rightarrow \ell_1=\overrightarrow{O A}+\lambda \overrightarrow{A B}\)

  \(\overrightarrow{O M}\) \(=\dfrac{1}{2} \underset{\sim}{a}+\dfrac{1}{2} \underset{\sim}{b}\)
    \(=\underset{\sim}{a}-\dfrac{1}{2} \underset{\sim}{a}+\dfrac{1}{2} \underset{\sim}{b}\)
    \(=\overrightarrow{O A}+\dfrac{1}{2}(\underset{\sim}{b}-\underset{\sim}{a})\)
    \(=\overrightarrow{O A}+\dfrac{1}{2} \overrightarrow{A B}\)

 
\(\therefore \overrightarrow{OM} \ \text{lies on} \ \ell_1\).
 

ii.    \(\text{Equation of line through \(M\) and \(C\)}\)

\(\Rightarrow \ell_2=\overrightarrow{OC}+\lambda \overrightarrow{CM}\)

  \(\overrightarrow{O G}\) \(=\dfrac{1}{3}(\underset{\sim}{a}+\underset{\sim}{b}+\underset{\sim}{c})\)
    \(=\underset{\sim}{c}-\dfrac{2}{3} \underset{\sim}{c}+\dfrac{1}{3} \underset{\sim}{a}+\dfrac{1}{3} \underset{\sim}{b}\)
    \(=\overrightarrow{OC}+\dfrac{2}{3}\left(\dfrac{1}{2} \underset{\sim}{a}+\dfrac{1}{2} \underset{\sim}{b}-\underset{\sim}{c}\right)\)
    \(=\overrightarrow{OC}+\dfrac{2}{3} \overrightarrow{CM}\)

 
\(\therefore \overrightarrow{O G} \ \ \text{lies on} \ \ \ell_2\)

\(\ \ \overrightarrow{O G} \neq \overrightarrow{O C}  \ \ \text{and} \ \ \overrightarrow{O G} \neq \overrightarrow{O M}\)

\(\therefore G \ \ \text{lies between} \ \ C \ \text{and} \ M\).

♦ Mean mark (ii) 43%.

iii.  \(\text{Place}\ x, w,\ \text{and}\ z\ \text{on unit circle.}\)
 

♦♦♦ Mean mark (iii) 10%.

\(\abs{w}=\abs{x}=\abs{z}=1\)

\(\text{Using part (ii):}\)

\(G \equiv \dfrac{1}{3}(x+w+z)\)

\(G \ \text{lies on} \ CM \Rightarrow G \ \text{is inside the unit circle.}\)

\(\Rightarrow\left|\dfrac{1}{3}(x+w+z)\right|<1\)

\(\text{Since}\ \ \abs{xwz}=\abs{x}\abs{w}\abs{z}=1\)

\(\Rightarrow \ \text{All cube roots have modulus = 1.}\)

\(\therefore \dfrac{1}{3}(x+w+z) \ \ \text{cannot be a cube root of  \(xwz\).}\)

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 4, Band 5, Band 6, smc-1196-25-Point lies on line, smc-1196-70-2D vectors, smc-1196-85-Complex Numbers

Vectors, EXT2 V1 2022 HSC 11e

Let `ℓ_(1)` be the line with equation `([x],[y])=([-1],[7])+lambda([3],[2]),lambda inRR`.

The line `ℓ_(2)` passes through the point  `A(-6,5)`  and is parallel to `ℓ_(1)`.

Find the equation of the line `ℓ_(2)` in the form  `y=mx+c`.  (2 marks)

Show Answers Only

`y=2/3x+9`

Show Worked Solution

`m_(ℓ_(1))=2/3`

`text{Equation of}\ ℓ_(2)\ text{has}\ m=2/3\ text{and passes through}\ (-6,5):`

`y-5` `=2/3(x+6)`  
`y` `=2/3x+9`  

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-30-Parallel, smc-1196-50-Vector to Cartesian, smc-1196-70-2D vectors

Vectors, EXT2 V1 SM-Bank 6

  1. What vector line equation, `underset~r`, corresponds to the Cartesian equation
  2. `qquad (x + 2)/5 = (y - 5)/4`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Express   `underset~v`  in Cartesian form where,
  4. `qquad underset~v = ((1),(−4)) + lambda((3),(1))`  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `underset~r = ((−2),(5)) + lambda((5),(4))`
  2.  `y = (x – 13)/3`
Show Worked Solution

i.   `underset~r = ((−2),(5)) + lambda((5),(4))`

COMMENT: Ensure you know the format for conversion from Cartesian to vector form (part i)!

 

ii.   `((x),(y)) = ((1),(−4)) + lambda((3),(1))`

`x = 1 + 3lambda \ \ => \ lambda = (x – 1)/3`
`y = −4 + lambda\ \ => \ lambda = y + 4`

 
`y + 4 = (x – 1)/3`

`:. y = (x – 13)/3`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-50-Vector to Cartesian, smc-1196-60-Cartesian to Vector, smc-1196-70-2D vectors

Vectors, EXT2 V1 SM-Bank 2

  1. Find values of  `a`, `b`, `c`  and  `d`  such that  `underset~v = ((a),(b)) + 2((c),(d))`  is a vector equation of a line that passes through  `((3),(1))`  and  `((−3),(−3))`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Determine whether  `underset~u = ((4),(6)) + lambda((−2),(3))`  is perpendicular to  `underset~v`.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Express  `underset~u`  in Cartessian form.  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `a = 3, b = 1, c = −3, d = −2`, or

     

    `a = −3, b = −3, c = 3, d = 2`

  2. `text(See worked solutions)`
  3. `y = −3/2x + 12`
Show Worked Solution

i.   `text(Method 1)`

`overset(->)(OA) = underset~a = ((3),(1)),\ \ overset(->)(OB) = underset~b = ((−3),(−3))`

`overset(->)(AB)` `= overset(->)(OB) – overset(->)(OA)`
  `= ((−3),(−3)) – ((3),(1))`
  `= ((−6),(−4))`

 

`underset~v` `= underset~a + lambdaunderset~b`
  `= ((3),(1)) + lambda((−6),(−4))`
  `= ((3),(1)) + 2((−3),(−2))`

 
`:. a = 3, b = 1, c = −3, d = −2`

 

`text(Method 2)`

`overset(->)(BA)` `= overset(->)(OA) – overset(->)(OB)`
  `= ((3),(1)) – ((−3),(−3))`
  `= ((6),(4))`

 
`underset~v = ((−3),(−3)) + 2((3),(2))`
  

`:. a = −3, b = −3, c = 3, d = 2`
 

ii.   `underset~u = ((4),(6)) + lambda((−2),(3))`

`underset~v = ((3),(1)) + 2((−3),(−2))`

`((−2),(3)) · ((−3),(−2)) = 6 – 6 = 0`

`:. underset~u ⊥ underset~v`
 

iii.   `((x),(y))= ((4),(6)) + lambda((−2),(3))`

`x = 4 – 2lambda\ \ \ …\ (1)`

`y = 6 + 3lambda\ \ \ …\ (2)`

`text(Substitute)\ \ lambda = (4 – x)/2\ \ text{from (1) into (2):}`

`y` `= 6 + 3((4 – x)/2)`
`y` `= 6 + 6 – (3x)/2`
`y` `= −3/2x + 12`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, Band 4, smc-1196-10-Find line given 2 points, smc-1196-40-Perpendicular, smc-1196-50-Vector to Cartesian, smc-1196-70-2D vectors

Vectors, EXT2 V1 SM-Bank 8

Use the vector form of the linear equations

`3x - 2y = 4`  and  `3y + 2x - 6 = 0`

to show they are perpendicular.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ text{(See Worked Solutions)}`

Show Worked Solution
`3x-2y` `= 4`
`3x` `= 2y + 4`
`3/2 x` `=y+2`
`x/(2/3)` `= y + 2`

 
`underset ~(v_1) = ((0), (-2)) + lambda ((2/3), (1))`

 

`3y + 2x-6` `= 0`
`2x` `= -3y + 6`
`-2/3 x` `= y-2`
`x/(-3/2)` `= y-2`

 
`underset ~(v_2) = ((0), (2)) + lambda ((-3/2), (1))`

`((2/3), (1)) ((-3/2), (1)) = -1 + 1 = 0`

`:. underset ~(v_1) _|_ underset ~(v_2)`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 4, smc-1196-40-Perpendicular, smc-1196-60-Cartesian to Vector, smc-1196-70-2D vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in