Let `ℓ_(1)` be the line with equation `([x],[y])=([-1],[7])+lambda([3],[2]),lambda inRR`.
The line `ℓ_(2)` passes through the point `A(-6,5)` and is parallel to `ℓ_(1)`.
Find the equation of the line `ℓ_(2)` in the form `y=mx+c`. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `ℓ_(1)` be the line with equation `([x],[y])=([-1],[7])+lambda([3],[2]),lambda inRR`.
The line `ℓ_(2)` passes through the point `A(-6,5)` and is parallel to `ℓ_(1)`.
Find the equation of the line `ℓ_(2)` in the form `y=mx+c`. (2 marks)
`y=2/3x+9`
`m_(ℓ_(1))=2/3`
`text{Equation of}\ ℓ_(2)\ text{has}\ m=2/3\ text{and passes through}\ (-6,5):`
`y-5` | `=2/3(x+6)` | |
`y` | `=2/3x+9` |
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `underset~r = ((−2),(5)) + lambda((5),(4))`
ii. `((x),(y)) = ((1),(−4)) + lambda((3),(1))`
`x = 1 + 3lambda \ \ => \ lambda = (x – 1)/3` |
`y = −4 + lambda\ \ => \ lambda = y + 4` |
`y + 4 = (x – 1)/3`
`:. y = (x – 13)/3`
--- 5 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
`a = −3, b = −3, c = 3, d = 2`
i. `text(Method 1)`
`overset(->)(OA) = underset~a = ((3),(1)),\ \ overset(->)(OB) = underset~b = ((−3),(−3))`
`overset(->)(AB)` | `= overset(->)(OB) – overset(->)(OA)` |
`= ((−3),(−3)) – ((3),(1))` | |
`= ((−6),(−4))` |
`underset~v` | `= underset~a + lambdaunderset~b` |
`= ((3),(1)) + lambda((−6),(−4))` | |
`= ((3),(1)) + 2((−3),(−2))` |
`:. a = 3, b = 1, c = −3, d = −2`
`text(Method 2)`
`overset(->)(BA)` | `= overset(->)(OA) – overset(->)(OB)` |
`= ((3),(1)) – ((−3),(−3))` | |
`= ((6),(4))` |
`underset~v = ((−3),(−3)) + 2((3),(2))`
`:. a = −3, b = −3, c = 3, d = 2`
ii. `underset~u = ((4),(6)) + lambda((−2),(3))`
`underset~v = ((3),(1)) + 2((−3),(−2))`
`((−2),(3)) · ((−3),(−2)) = 6 – 6 = 0`
`:. underset~u ⊥ underset~v`
iii. `((x),(y))= ((4),(6)) + lambda((−2),(3))`
`x = 4 – 2lambda\ \ \ …\ (1)`
`y = 6 + 3lambda\ \ \ …\ (2)`
`text(Substitute)\ \ lambda = (4 – x)/2\ \ text{from (1) into (2):}`
`y` | `= 6 + 3((4 – x)/2)` |
`y` | `= 6 + 6 – (3x)/2` |
`y` | `= −3/2x + 12` |
Use the vector form of the linear equations
`3x - 2y = 4` and `3y + 2x - 6 = 0`
to show they are perpendicular. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(Proof)\ text{(See Worked Solutions)}`
`3x-2y` | `= 4` |
`3x` | `= 2y + 4` |
`3/2 x` | `=y+2` |
`x/(2/3)` | `= y + 2` |
`underset ~(v_1) = ((0), (-2)) + lambda ((2/3), (1))`
`3y + 2x-6` | `= 0` |
`2x` | `= -3y + 6` |
`-2/3 x` | `= y-2` |
`x/(-3/2)` | `= y-2` |
`underset ~(v_2) = ((0), (2)) + lambda ((-3/2), (1))`
`((2/3), (1)) ((-3/2), (1)) = -1 + 1 = 0`
`:. underset ~(v_1) _|_ underset ~(v_2)`