It is given that \(\dfrac{d y}{d x}=\dfrac{5}{y}\) and \(y=-4\) when \(x=0\).
Find \(y\) as a function of \(x\). (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
It is given that \(\dfrac{d y}{d x}=\dfrac{5}{y}\) and \(y=-4\) when \(x=0\).
Find \(y\) as a function of \(x\). (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(y=-\sqrt{10 x+16}\)
| \(\dfrac{dy}{dx}\) | \(=\dfrac{5}{y}\) |
| \(\displaystyle \int y\,dy\) | \(=\displaystyle \int 5 \,d x\) |
| \(\dfrac{y^2}{2}\) | \(=5 x+c\) |
\(\text{Given} \ \ y=-4 \ \ \text{when} \ \ x=0:\)
| \(\dfrac{(-4)^2}{2}\) | \(=0+c \ \Rightarrow \ c=8\) |
| \(\dfrac{y^2}{2}\) | \(=5 x+8\) |
| \(y^2\) | \(=10 x+16\) |
| \(y\) | \(=-\sqrt{10 x+16} \quad \text{(Since \((0,-4)\) lies on graph)}\) |
Find the solution of \(\dfrac{dy}{dx}=\sqrt{(2-y)(2+y)}\), given that \(y=1\) when \(x=0\). (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(y=2\, \sin \left(x+\dfrac{\pi}{6}\right)\)
| \(\dfrac{d y}{d x}\) | \(=\sqrt{(2-y)(2+y)}\) | \(=\sqrt{4-y^2}\) |
| \(\dfrac{d x}{d y}\) | \(=\dfrac{1}{\sqrt{4-y^2}}\) | |
| \(\displaystyle \int d x\) | \(=\displaystyle \int \dfrac{1}{\sqrt{4-y^2}} d y\) | |
| \(x\) | \(=\sin ^{-1}\left(\dfrac{y}{2}\right)+c\) |
\(\text{When} \ \ x=0, y=1:\)
\(0=\sin ^{-1}\left(\dfrac{1}{2}\right)+c \ \ \Rightarrow \ \ c=-\dfrac{\pi}{6}\)
| \(x\) | \(=\sin ^{-1}\left(\dfrac{y}{2}\right)-\dfrac{\pi}{6}\) |
| \(\sin ^{-1}\left(\dfrac{y}{2}\right)\) | \(=x+\dfrac{\pi}{6}\) |
| \(\dfrac{y}{2}\) | \(=\sin \left(x+\dfrac{\pi}{6}\right)\) |
| \(y\) | \(=2\, \sin \left(x+\dfrac{\pi}{6}\right)\) |
A solution to the differential equation
\(\dfrac{d y}{d x}=e^{x-y}(\cos (x-y)-\cos (x+y))\) can be found using
\(C\)
\(\cos(x-y)-\cos(x+y)\)
\(=[\cos(x)\cos(y)+\sin(x)\sin(y)]-[\cos(x)\cos(y)-\sin(x)\sin(y)]\)
\(=2\sin(x)\sin(y)\)
| \(\dfrac{d y}{d x}\) | \(=e^{x-y}(\cos (x-y)-\cos (x+y))\) | |
| \(=e^{x-y} \times 2\sin(x)\sin(y)\) | ||
| \(=2e^{x}\sin(x) \left(\dfrac{\sin(y)}{e^{y}}\right) \) |
\(\displaystyle \int \dfrac{e^{y}}{\sin(y)}\,dy=\displaystyle \int 2e^{x}\sin(x)\,dx\)
\(\Rightarrow C\)
Find the domain and range of the function that is the solution to the differential equation \(\dfrac{d y}{d x}=e^{x+y}\) and whose graph passes through the origin. (4 marks) --- 9 WORK AREA LINES (style=lined) --- \(\text{Domain:}\ \ x<\ln 2\) \(\text{Range:}\ \ y>-\ln 2\) \(\dfrac{d y}{d x}=e^{x+y}=e^{x}\cdot e^{y}\) \(\text{Passes through }(0,0):\) \(-e^0=e^0+c \ \Rightarrow \ c=-2\) \(\text{Since}\ \ 2-e^x>0 \ \Rightarrow \ e^x<2\) \(\Rightarrow \ \text{Domain:}\ \ x<\ln 2\) \(\text{Since}\ \ e^x>0 \ \Rightarrow \ 2-e^x<2\) \(\Rightarrow \ \text{Range:}\ \ y>-\ln 2\)
\(\displaystyle\int e^{-y}\, d y\)
\(=\displaystyle \int e^x\, d x\)
\(-e^{-y}\)
\(=e^x+c\)
\(-e^{-y}\)
\(=e^x-2\)
\(e^{-y}\)
\(=2-e^x\)
\(-y\)
\(=\ln \left(2-e^x\right)\)
\(y\)
\(=-\ln \left(2-e^x\right)\)
Solve the differential equation \(\dfrac{d y}{d x}=x y\), given \(y>0\). Express your answer in the form \(y=e^{f(x)}\). (2 marks) --- 6 WORK AREA LINES (style=lined) --- \(y=e^{\frac{x^2}{2}}\)
\(\dfrac{d y}{d x}\)
\(=x y\)
\(\displaystyle\int \frac{1}{y}\, d y\)
\(=\displaystyle\int x\, d x\)
\(\ln y\)
\(=\dfrac{1}{2} x^2+c\)
\(y\)
\(=e^{\frac{x^2}{2}+c}\)
\(=e^{\frac{x^2}{2}} \cdot e^c\)
\(=A e^{\frac{x^2}{2}} \text{ (where \(A=e^c)\)}\)
\(\therefore y=e^{\frac{x^2}{2}}\ \ \text{is a solution } (A=1)\)
Find the particular solution to the differential equation `(x-2)(dy)/(dx)=xy` that passes through the point `(0,1)`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`y=(e^x(x-2)^2)/4`
| `(x-2)(dy)/(dx)` | `=xy` | |
| `1/y* dy/dx` | `=x/(x-2)` | |
| `int 1/y\ dy` | `=int x/(x-2)\ dx` | |
| `ln|y|` | `=int (x-2)/(x-2)+2/(x-2)\ dx` | |
| `=int 1+2/(x-2)\ dx` | ||
| `=x+2ln|x-2|+c` |
`text{Passes through (0,1):`
| `ln1` | `=0+2ln|-2|+c` | |
| `c` | `=-2ln2` |
| `ln|y|` | `=x+2ln|x-2|-2ln2` | |
| `=lne^x+ln(x-2)^2-ln2^2` | ||
| `=ln(e^x((x-2)^2)/4)` | ||
| `|y|` | `=(e^x(x-2)^2)/4` | |
| `:.y` | `=(e^x(x-2)^2)/4\ \ (e^x>0,\ \ (x-2)^2>0)` |
Which of the following could be the graph of a solution to the differential equation
`(dy)/(dx)=sin y+1?`
`B`
`text{One Strategy}`
`text{When}\ \ (dy)/(dx)=0:`
`siny=-1\ \ =>\ \ y=(3pi)/2 + 2kpi\ \ (kinZZ)`
`text{Graphically,}\ \ y=(3pi)/2 + 2kpi\ \ text{are horizontal asymptotes.}`
`=>B`
Consider the differential equation `(dy)/(dx) = x/y`.
Which of the following equations best represents this relationship between `x` and `y`?
`A`
| `(dy)/(dx)` | `= x/y` |
| `int y\ dy` | `= int x\ dx` |
| `1/2 y^2` | `= 1/2 x^2 + c` |
| `y^2` | `= x^2 + c_1` |
`=> A`
Find the curve which satisfies the differential equation `(dy)/(dx) = -x/y` and passes through the point `(1, 0)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x^2+y^2=1`
`(dy)/(dx) = -x/y`
`int y\ dy = −int x\ dx`
`(y^2)/2 = -(x^2)/2 + c`
`text{Curve passes through (1, 0):}`
| `0` | `= -1/2 + c` |
| `c` | `= 1/2` |
| `(y^2)/2` | `= -(x^2)/2 + 1/2` |
| `y^2` | `= -x^2 + 1` |
| `:.x^2+y^2` | `= 1` |
Solve `(dy)/(dx) = e^(2y)`, finding `x` as a function of `y`. (2 marks)
`x = −1/2 e^(−2y) + c`
| `(dy)/(dx)` | `= e^(2y)` |
| `(dx)/(dy)` | `= e^(−2y)` |
| `x` | `= int e^(−2y)\ dy` |
| `:. x` | `= −1/2 e^(−2y) + c` |
Solve the differential equation `sqrt(2-x^2) (dy)/(dx) = 1/(2-y)`, given that `y(1) = 0`. Express `y` as a function of `x`. (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
`y = 2-sqrt(4 + pi/2-2 sin^(-1)(x/sqrt 2))`
| `sqrt(2-x^2) *(dy)/(dx)` | `= 1/(2-y)` |
| `(2-y)* (dy)/(dx)` | `= 1/sqrt(2-x^2)` |
| `int 2-y\ dy` | `= int 1/(sqrt(2-x^2))\ dx` |
| `2y-y^2/2` | `= sin^(-1) (x/sqrt 2) + c` |
`text(Given)\ \ y(1) = 0:`
`0=sin^(-1) (1/sqrt 2) + c`
`c=-pi/4`
| `2y-y^2/2` | `= sin^(-1) (x/sqrt 2)-pi/4` |
| `y^2-4y` | `= -2 sin^(-1) (x/sqrt 2) + pi/2` |
| `(y-2)^2-4` | `= -2 sin^(-1) (x/sqrt 2) + pi/2` |
| `(y-2)^2` | `= 4 + pi/2-2 sin^(-1) (x/sqrt 2)` |
| `(y-2)` | `= +- sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))` |
| `y` | `=2 +- sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))` |
`text(Given)\ \ y=0\ \ text(when)\ \ x=1:`
`:. y=2-sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))`
Let `(dy)/(dx) = (4 - y)^2`.
Express `y` in terms of `x`, where `y(0) = 3`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y = 4-1/(x + 1)`
| `(dy)/(dx)` | `=(4-y)^2` |
| `(dx)/(dy)` | `= 1/(4-y)^2` |
| `x` | `= int 1/(4-y)^2\ dy` |
| `= int (4-y)^(-2) dy` | |
| `= (-1)(-1)(4-y)^(-1)+ c` | |
| `= 1/(4-y) + c` |
`text(When)\ \ x=0,\ \ y=3:`
| `0` | `= 1/(4-3) + c` |
| `:.c` | `= -1` |
| `x` | `= 1/(4-y) – 1` |
| `x + 1` | `= 1/(4-y)` |
| `1/(x + 1)` | `= 4-y` |
| `:. y` | `= 4-1/(x + 1)` |
A solution to the differential equation `(dy)/(dx) = (cos(x + y) - cos(x - y))/(e^(x + y))` can be obtained from
`A`
| `dy/dx` | `=(cos(x + y) – cos(x – y))/(e^(x + y))` |
| `(dy)/(dx)` | `= (cos(x) cos(y) – sin(x) sin(y) – cos(x) cos(y) – sin(x) sin(y))/(e^x ⋅ e^y)` |
| `e^y *(dy)/(dx)` | `= (-2 sin(x) sin(y))/(e^x)` |
| `e^y/(sin(y)) *(dy)/(dx)` | `= (-2 sin(x))/(e^x)` |
| `:. int e^y/(sin(y))\ dy` | `= -int (2 sin(x))/e^x\ dx` |
`=> A`
A solution to the differential equation `(dy)/(dx) = 2/{sin(x + y) - sin(x - y)}` can be obtained from
`D`
| `(dy)/(dx)` | `= 2/{sin(x) cos(y) + sin(y) cos(x) – (sin(x) cos(y) – sin(y) cos(x))}` |
| `= 2/{2 sin(y) cos(x)}` | |
| `= 1/{sin(y) cos(x)}` |
`sin(y) *(dy)/(dx)= sec(x)`
`int sin (y)\ dy= int sec(x)\ dx`
`=> D`
Find `y` given `dy/dx = 1 - y/3` and `y = 4` when `x = 2`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y= 3 + e^((2 – x)/3)`
| `(dy)/(dx)` | `= (3 – y)/3` |
| `(dx)/(dy)` | `= 3/(3 – y)` |
| `x` | `= int 3/(3 – y)\ dy` |
| `x/3` | `= -ln |3 – y| + c` |
`text(Given)\ \ y=4\ \ text(when)\ \ x=2:`
`2/3= -ln|-1| + c`
`c=2/3`
| ` x/3` | `=-ln |3 – y| +2/3` |
| `ln|3-y|` | `= (2-x)/3` |
| `3-y` | `= ±e^((2 – x)/3)` |
| `:. y` | `= 3 + e^((2 – x)/3)` |