SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1 C3 2025 HSC 13a

It is given that  \(\dfrac{d y}{d x}=\dfrac{5}{y}\)  and  \(y=-4\)  when  \(x=0\).

Find \(y\) as a function of \(x\).   (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(y=-\sqrt{10 x+16}\)

Show Worked Solution
\(\dfrac{dy}{dx}\) \(=\dfrac{5}{y}\)
\(\displaystyle \int y\,dy\) \(=\displaystyle \int 5 \,d x\)
\(\dfrac{y^2}{2}\) \(=5 x+c\)

 

\(\text{Given} \ \ y=-4 \ \ \text{when} \ \ x=0:\)

\(\dfrac{(-4)^2}{2}\) \(=0+c \ \Rightarrow \ c=8\)
\(\dfrac{y^2}{2}\) \(=5 x+8\)
\(y^2\) \(=10 x+16\)
\(y\) \(=-\sqrt{10 x+16} \quad \text{(Since \((0,-4)\) lies on graph)}\)

Filed Under: Equations and Slope Fields Tagged With: Band 4, smc-1197-20-Differential Equations, smc-1197-40-dy/dx = f(y)

Calculus, EXT1 C3 2025 HSC 12d

Find the solution of  \(\dfrac{dy}{dx}=\sqrt{(2-y)(2+y)}\), given that  \(y=1\)  when  \(x=0\).   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(y=2\, \sin \left(x+\dfrac{\pi}{6}\right)\)

Show Worked Solution
\(\dfrac{d y}{d x}\) \(=\sqrt{(2-y)(2+y)}\) \(=\sqrt{4-y^2}\)
\(\dfrac{d x}{d y}\) \(=\dfrac{1}{\sqrt{4-y^2}}\)
\(\displaystyle \int d x\) \(=\displaystyle \int \dfrac{1}{\sqrt{4-y^2}} d y\)
\(x\) \(=\sin ^{-1}\left(\dfrac{y}{2}\right)+c\)

 

\(\text{When} \ \ x=0, y=1:\)

\(0=\sin ^{-1}\left(\dfrac{1}{2}\right)+c \ \ \Rightarrow \ \ c=-\dfrac{\pi}{6}\)

\(x\) \(=\sin ^{-1}\left(\dfrac{y}{2}\right)-\dfrac{\pi}{6}\)
\(\sin ^{-1}\left(\dfrac{y}{2}\right)\) \(=x+\dfrac{\pi}{6}\)
\(\dfrac{y}{2}\) \(=\sin \left(x+\dfrac{\pi}{6}\right)\)
\(y\) \(=2\, \sin \left(x+\dfrac{\pi}{6}\right)\)

Filed Under: Equations and Slope Fields Tagged With: Band 4, smc-1197-20-Differential Equations, smc-1197-40-dy/dx = f(y)

Calculus, EXT1 C3 2024 SPEC2 7 MC

A solution to the differential equation

\(\dfrac{d y}{d x}=e^{x-y}(\cos (x-y)-\cos (x+y))\)  can be found using

  1. \(\displaystyle \int e^y \cos (y) d y=2 \int e^x \cos (x) d x\)
  2. \(\displaystyle\int \frac{e^y}{\sin (y)} d y=2 \int e^{-x} \sin (x) d x\)
  3. \(\displaystyle\int \frac{e^y}{\sin (y)} d y=2 \int e^x \sin (x) d x\)
  4. \(\displaystyle\int e^{-y} \sin (y) d y=2 \int \frac{e^x}{\cos (x)} d x\)
Show Answers Only

\(C\)

Show Worked Solution

\(\cos(x-y)-\cos(x+y)\)

\(=[\cos(x)\cos(y)+\sin(x)\sin(y)]-[\cos(x)\cos(y)-\sin(x)\sin(y)]\)

\(=2\sin(x)\sin(y)\)
 

\(\dfrac{d y}{d x}\) \(=e^{x-y}(\cos (x-y)-\cos (x+y))\)  
  \(=e^{x-y} \times 2\sin(x)\sin(y)\)  
  \(=2e^{x}\sin(x) \left(\dfrac{\sin(y)}{e^{y}}\right) \)  

 
\(\displaystyle \int \dfrac{e^{y}}{\sin(y)}\,dy=\displaystyle \int 2e^{x}\sin(x)\,dx\)

\(\Rightarrow C\)

Filed Under: Equations and Slope Fields Tagged With: Band 4, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y)

Calculus, EXT1 C3 2024 HSC 14a

Find the domain and range of the function that is the solution to the differential equation

\(\dfrac{d y}{d x}=e^{x+y}\)

and whose graph passes through the origin.   (4 marks)

--- 9 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\text{Domain:}\ \ x<\ln 2\)

\(\text{Range:}\ \ y>-\ln 2\)

Show Worked Solution

\(\dfrac{d y}{d x}=e^{x+y}=e^{x}\cdot e^{y}\)

  \(\displaystyle\int e^{-y}\, d y\) \(=\displaystyle \int e^x\, d x\)
  \(-e^{-y}\) \(=e^x+c\)
♦ Mean mark 52%.

\(\text{Passes through }(0,0):\)

\(-e^0=e^0+c \ \Rightarrow \ c=-2\)

  \(-e^{-y}\) \(=e^x-2\)
  \(e^{-y}\) \(=2-e^x\)
  \(-y\) \(=\ln \left(2-e^x\right)\)
  \(y\) \(=-\ln \left(2-e^x\right)\)

\(\text{Since}\ \ 2-e^x>0 \ \Rightarrow \ e^x<2\)

\(\Rightarrow \ \text{Domain:}\ \ x<\ln 2\)

\(\text{Since}\ \ e^x>0 \ \Rightarrow \ 2-e^x<2\)

\(\Rightarrow \ \text{Range:}\ \ y>-\ln 2\)

Filed Under: Equations and Slope Fields Tagged With: Band 5, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y)

Calculus, EXT1 C3 2024 HSC 11d

Solve the differential equation  \(\dfrac{d y}{d x}=x y\),  given  \(y>0\). Express your answer in the form  \(y=e^{f(x)}\).   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(y=e^{\frac{x^2}{2}}\)

Show Worked Solution

  \(\dfrac{d y}{d x}\) \(=x y\)
  \(\displaystyle\int \frac{1}{y}\, d y\) \(=\displaystyle\int x\, d x\)
  \(\ln y\) \(=\dfrac{1}{2} x^2+c\)
  \(y\) \(=e^{\frac{x^2}{2}+c}\)
    \(=e^{\frac{x^2}{2}} \cdot e^c\)
    \(=A e^{\frac{x^2}{2}} \text{ (where \(A=e^c)\)}\)

 
\(\therefore y=e^{\frac{x^2}{2}}\ \  \text{is a solution } (A=1)\)

Filed Under: Equations and Slope Fields Tagged With: Band 3, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y)

Calculus, EXT1 C3 2022 HSC 14a

Find the particular solution to the differential equation  `(x-2)(dy)/(dx)=xy`  that passes through the point `(0,1)`.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`y=(e^x(x-2)^2)/4`

Show Worked Solution
`(x-2)(dy)/(dx)` `=xy`  
`1/y* dy/dx` `=x/(x-2)`  
`int 1/y\ dy` `=int x/(x-2)\ dx`  
`ln|y|` `=int (x-2)/(x-2)+2/(x-2)\ dx`  
  `=int 1+2/(x-2)\ dx`  
  `=x+2ln|x-2|+c`  

 
`text{Passes through (0,1):`

`ln1` `=0+2ln|-2|+c`  
`c` `=-2ln2`  

 

`ln|y|` `=x+2ln|x-2|-2ln2`  
  `=lne^x+ln(x-2)^2-ln2^2`  
  `=ln(e^x((x-2)^2)/4)`  
`|y|` `=(e^x(x-2)^2)/4`  
`:.y` `=(e^x(x-2)^2)/4\ \ (e^x>0,\ \ (x-2)^2>0)`  

♦ Mean mark 43%.

Filed Under: Equations, Equations and Slope Fields Tagged With: Band 5, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y), smc-5161-30-dy/dx=f(xy)

Calculus, EXT1 C3 2022 HSC 10 MC

Which of the following could be the graph of a solution to the differential equation

`(dy)/(dx)=sin y+1?`
 


 

Show Answers Only

`B`

Show Worked Solution

`text{One Strategy}`

`text{When}\ \ (dy)/(dx)=0:`

`siny=-1\ \ =>\ \ y=(3pi)/2 + 2kpi\ \ (kinZZ)`

`text{Graphically,}\ \ y=(3pi)/2 + 2kpi\ \ text{are horizontal asymptotes.}`

`=>B`


♦♦♦ Mean mark 27%.

Filed Under: Equations and Slope Fields Tagged With: Band 6, smc-1197-20-Differential Equations, smc-1197-40-dy/dx = f(y)

Calculus, EXT1 C3 2021 HSC 4 MC

Consider the differential equation  `(dy)/(dx) = x/y`.

Which of the following equations best represents this relationship between `x` and `y`?

  1. `y^2 = x^2 + c`
  2. `y^2 = (x^2)/2 + c`
  3. `y = x ln\ | y | + c`
  4. `y = (x^2)/2 ln\ |y| + c`
Show Answers Only

`A`

Show Worked Solution
`(dy)/(dx)` `= x/y`
`int y\ dy` `= int x\ dx`
`1/2 y^2` `= 1/2 x^2 + c`
`y^2` `= x^2 + c_1`

 
`=> A`

Filed Under: Equations and Slope Fields Tagged With: Band 3, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y)

Calculus, EXT1 C3 2020 HSC 12e

Find the curve which satisfies the differential equation  `(dy)/(dx) = -x/y`  and passes through the point  `(1, 0)`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`x^2+y^2=1`

Show Worked Solution
COMMENT: Note the answer requires a curve equation, not a function.

`(dy)/(dx) = -x/y`

`int y\ dy = −int x\ dx`

`(y^2)/2 = -(x^2)/2 + c`

 
`text{Curve passes through (1, 0):}`

`0` `= -1/2 + c`
`c` `= 1/2`
`(y^2)/2` `= -(x^2)/2 + 1/2`
`y^2` `= -x^2 + 1`
`:.x^2+y^2` `= 1`

Filed Under: Equations, Equations and Slope Fields Tagged With: Band 5, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y), smc-5161-30-dy/dx=f(xy)

Calculus, EXT1 C3 2020 HSC 11e

Solve  `(dy)/(dx) = e^(2y)`, finding `x` as a function of `y`.  (2 marks)

Show Answers Only

`x = −1/2 e^(−2y) + c`

Show Worked Solution
`(dy)/(dx)` `= e^(2y)`
`(dx)/(dy)` `= e^(−2y)`
`x` `= int e^(−2y)\ dy`
`:. x` `= −1/2 e^(−2y) + c`

Filed Under: Equations, Equations and Slope Fields Tagged With: Band 3, smc-1197-20-Differential Equations, smc-1197-40-dy/dx = f(y), smc-5161-50-dy/dx=f(y)

Calculus, EXT1 C3 2016 SPEC1 10

Solve the differential equation  `sqrt(2-x^2) (dy)/(dx) = 1/(2-y)`, given that  `y(1) = 0`. Express `y` as a function of  `x`.  (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`y = 2-sqrt(4 + pi/2-2 sin^(-1)(x/sqrt 2))`

Show Worked Solution
`sqrt(2-x^2) *(dy)/(dx)` `= 1/(2-y)`
`(2-y)* (dy)/(dx)` `= 1/sqrt(2-x^2)`
`int 2-y\ dy` `= int 1/(sqrt(2-x^2))\ dx`
`2y-y^2/2` `= sin^(-1) (x/sqrt 2) + c`

 
`text(Given)\ \ y(1) = 0:`

♦ Mean mark 46%.

`0=sin^(-1) (1/sqrt 2) + c`

`c=-pi/4`

`2y-y^2/2` `= sin^(-1) (x/sqrt 2)-pi/4`
`y^2-4y` `= -2 sin^(-1) (x/sqrt 2) + pi/2`
`(y-2)^2-4` `= -2 sin^(-1) (x/sqrt 2) + pi/2`
`(y-2)^2` `= 4 + pi/2-2 sin^(-1) (x/sqrt 2)`
`(y-2)` `= +- sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))`
`y` `=2 +- sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))`

 
`text(Given)\ \ y=0\ \ text(when)\ \ x=1:`

`:. y=2-sqrt(4 + pi/2-2 sin^(-1) (x/sqrt 2))`

Filed Under: Equations and Slope Fields Tagged With: Band 5, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y), y)

Calculus, EXT1 C3 2017 SPEC1-N 7

Let  `(dy)/(dx) = (4 - y)^2`.

Express  `y`  in terms of  `x`, where  `y(0) = 3`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y = 4-1/(x + 1)`

Show Worked Solution
`(dy)/(dx)` `=(4-y)^2`
`(dx)/(dy)` `= 1/(4-y)^2`
`x` `= int 1/(4-y)^2\ dy`
  `= int (4-y)^(-2) dy`
  `= (-1)(-1)(4-y)^(-1)+ c`
  `= 1/(4-y) + c`

 
`text(When)\ \ x=0,\ \ y=3:`

`0` `= 1/(4-3) + c`
`:.c` `= -1`

 

`x` `= 1/(4-y) – 1`
`x + 1` `= 1/(4-y)`
`1/(x + 1)` `= 4-y`
`:. y` `= 4-1/(x + 1)`

Filed Under: Equations and Slope Fields Tagged With: Band 4, smc-1197-20-Differential Equations, smc-1197-40-dy/dx = f(y)

Calculus, EXT1 C3 2017 SPEC2-N 10 MC

A solution to the differential equation  `(dy)/(dx) = (cos(x + y) - cos(x - y))/(e^(x + y))`  can be obtained from

  1. `int e^y/(sin(y))\ dy = -int (2 sin(x))/e^x\ dx`
  2. `int e^y/(cos(y))\ dy = int 2/e^x\ dx`
  3. `int e^y/(cos(y))\ dy = -int (2 cos(x))/e^x\ dx`
  4. `int e^y/(cos(y))\ dy = int (2 sin(x))/e^x\ dx`
Show Answers Only

`A`

Show Worked Solution
`dy/dx` `=(cos(x + y) – cos(x – y))/(e^(x + y))`
`(dy)/(dx)` `= (cos(x) cos(y) – sin(x) sin(y) – cos(x) cos(y) – sin(x) sin(y))/(e^x ⋅ e^y)`
`e^y *(dy)/(dx)` `= (-2 sin(x) sin(y))/(e^x)`
`e^y/(sin(y)) *(dy)/(dx)` `= (-2 sin(x))/(e^x)`
`:. int e^y/(sin(y))\ dy` `= -int (2 sin(x))/e^x\ dx`

 
`=>   A`

Filed Under: Equations and Slope Fields Tagged With: Band 4, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y), y)

Calculus, EXT1 C3 2018 SPEC2 9 MC

A solution to the differential equation  `(dy)/(dx) = 2/{sin(x + y) - sin(x - y)}`  can be obtained from

  1. `int 1\ dx = int 2 sin(y)\ dy`
  2. `int cos(y)\ dy = int text{cosec}(x)\ dx`
  3. `int cos(x)\ dx = int text{cosec}(y)\ dy`
  4. `int sec(x)\ dx = int sin(y)\ dy`
Show Answers Only

`D`

Show Worked Solution
`(dy)/(dx)` `= 2/{sin(x) cos(y) + sin(y) cos(x) – (sin(x) cos(y) – sin(y) cos(x))}`
  `= 2/{2 sin(y) cos(x)}`
  `= 1/{sin(y) cos(x)}`

 
`sin(y) *(dy)/(dx)= sec(x)`

`int sin (y)\ dy= int sec(x)\ dx`

`=>  D`

Filed Under: Equations and Slope Fields Tagged With: Band 4, smc-1197-20-Differential Equations, smc-1197-30-dy/dx = f(x y), y)

Calculus, EXT1 C3 2015 SPEC2 12

Find  `y`  given  `dy/dx = 1 - y/3`  and  `y = 4`  when  `x = 2`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`y= 3 + e^((2 – x)/3)`

Show Worked Solution
`(dy)/(dx)` `= (3 – y)/3`
`(dx)/(dy)` `= 3/(3 – y)`
`x` `= int 3/(3 – y)\ dy`
`x/3` `= -ln |3 – y| + c`

 
`text(Given)\ \ y=4\ \ text(when)\ \ x=2:`

`2/3= -ln|-1| + c`

`c=2/3`
 

` x/3` `=-ln |3 – y| +2/3`
`ln|3-y|` `= (2-x)/3`
`3-y` `= ±e^((2 – x)/3)`
`:. y` `= 3 + e^((2 – x)/3)`

Filed Under: Equations and Slope Fields Tagged With: Band 3, smc-1197-20-Differential Equations, smc-1197-40-dy/dx = f(y)

Copyright © 2014–2025 SmarterEd.com.au · Log in