What is \( {\displaystyle \int(6 x+1)^3 d x} \) ?
- \( \dfrac{1}{24}(6 x+1)^4+C \)
- \( \dfrac{1}{4}(6 x+1)^4+C \)
- \( \dfrac{2}{3}(6 x+1)^4+C \)
- \( \dfrac{3}{2}(6 x+1)^4+C \)
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is \( {\displaystyle \int(6 x+1)^3 d x} \) ?
\( A \)
\[ \int(6 x+1)^3 dx\] | \(=\dfrac{1}{4} \cdot \dfrac{1}{6}(6 x+1)^4+C\) | |
\(=\dfrac{1}{24}(6 x+1)^4+C\) |
\( \Rightarrow A \)
Find `int xsqrt(x^2+1)\ dx` (2 marks)
`1/3(x^2+1)^(3/2)+c`
`int xsqrt(x^2+1)\ dx`
`=1/2 int 2x(x^2+1)^(1/2)\ dx`
`=1/2 xx 2/3 (x^2+1)^(3/2)+c`
`=1/3(x^2+1)^(3/2)+c`
What is `int(1)/((2x+1)^(2))\ dx` ?
`B`
`int (2x+1)^(-2)` | `=(2x+1)^(-1)/((-1)(2))+C` | |
`=(-1)/(2(2x+1))+C` |
`=>B`
Let `f^(')(x)=(2)/(sqrt(2x-3))`.
If `f(6)=4`, then
`=>C`
`f^{‘}(x)` | `=2/(sqrt(2x-3))` | |
`f(x)` | `=2 int(2x-3)^{- 1/2}` | |
`=2*1/2*2(2x-3)^{1/2}+c` | ||
`=2sqrt(2x-3)+c` |
`text(When)\ \ x=6, \ f(x)=4:`
`4=2sqrt(12-3) + c \ => \ c=-2`
`:. f(x) = 2sqrt(2x-3) – 2`
`=>C`
Let `f^(′)(x) = x^3 + x`.
Find `f(x)` given that `f(1) = 2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`f(x) =1/4 x^4 + 1/2 x^2 +5/4`
`f^(′)(x)` | `= x^3 + x` | |
`f(x)` | `=int x^3 + x\ dx` | |
`=1/4 x^4 + 1/2 x^2 +c` |
`text(Given)\ f(1) = 2:`
`2` | `= 1/4 + 1/2 + c` | |
`c` | `= 5/4` |
`:. f(x) =1/4 x^4 + 1/2 x^2 +5/4`
Find `f(x)` given that `f(1) = -7/4` and `f ^{\prime}(x) = 2x^2 - 1/4x^(-2/3)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`f(x) = 2/3x^3 – 3/4x^(1/3) – 5/3`
`f(x)` | `= int 2x^2 – 1/4x^(-2/3) dx` |
`= 2/3x^3 – 1/4 ⋅ 1/(1/3) x^(1/3) + c` | |
`= 2/3x^3 – 3/4x^(1/3) + c` |
`text(Given)\ \ f(1) = -7/4:`
`-7/4` | `= 2/3 – 3/4 + c` |
`c` | `= -5/3` |
`:. f(x)` | `= 2/3x^3 – 3/4x^(1/3) – 5/3` |
Find `int (2x + 1)^4\ dx`. (1 mark)
`(2x + 1)^5/10 + C`
`int (2x + 1)^4\ dx` | `= 1/5 xx 1/2 xx (2x + 1)^5 +C` |
`= (2x + 1)^5/10 +C` |
Find `int 1/((x + 3)^2)\ dx`. (2 marks)
`(-1)/((x + 3)) + C`
`int 1/((x + 3)^2)\ dx`
`= int (x + 3)^(-2)\ dx`
`= 1/(-1)*(x + 3)^(-1) + C`
`= (-1)/((x + 3)) + C`
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `int 5\ dx= 5x + C`
ii. `int 3/((x – 6)^2)\ dx`
`= 3 int (x – 6)^(-2)\ dx`
`= 3 xx 1/(-1) xx (x – 6)^(-1) + c`
`= (-3)/((x – 6)) + c`
iii. `int_1^4 x^2 + sqrtx\ \ dx`
`= int_1^4 (x^2 + x^(1/2))\ dx`
`= [1/3 x^3 + 1/(3/2) x^(3/2)]_1^4`
`= [(x^3)/3 + 2/3x^(3/2)]_1^4`
`= [((4^3)/3 + 2/3 xx 4^(3/2))\ – (1/3 + 2/3)]`
`= [(64/3 + 16/3) – 3/3]`
`= [80/3 – 3/3]`
`= 77/3`
Find `int sqrt(5x +1) \ dx .` (2 marks)
`2/15(5x + 1)^(3/2) + C`
` int sqrt( 5x + 1 ) \ dx` | `= 1/(3/2) xx 1/5 xx (5x+1)^(3/2) +C` |
`= 2/15(5x + 1)^(3/2) + C` |
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. | `y` | `= sqrt(9 – x^2)` |
`= (9 – x^2)^(1/2)` |
`dy/dx` | `=1/2 xx (9 – x^2)^(-1/2) xx d/dx (9 – x^2)` |
`= 1/2 xx (9 – x^2)^(-1/2) xx -2x` | |
`= – x/sqrt(9 – x^2)` |
ii. | `int (6x)/sqrt(9 – x^2)\ dx` | `= -6 int (-x)/sqrt(9 – x^2)\ dx` |
`= -6 (sqrt(9 – x^2)) + C` | ||
`= -6 sqrt(9 – x^2) + C` |
Find `int 1/(3x^2)\ dx`. (2 marks)
`-1/(3x) + C`
`int 1/(3x^2)\ dx` | `= 1/3 int x^-2\ dx` |
`= 1/3 xx 1/-1 xx x^-1 + C` | |
`= – 1/(3x) + C` |