Let \(w=\text{cis}\left(\dfrac{2 \pi}{7}\right)\). --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 4 WORK AREA LINES (style=blank) --- --- 2 WORK AREA LINES (style=lined) --- --- 4 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) ---
Complex Numbers, SPEC2 2023 VCAA 5 MC
Let \(z\) be a complex number where \(\operatorname{Re}(z)>0\) and \(\operatorname{Im}(z)>0\).
Given \(|\bar{z}|=4\) and \(\arg \left(z^3\right)=-\pi\), then \(z^2\) is equivalent to
- \( {4z} \)
- \( -2 \bar{z} \)
- \( 3z \)
- \(\bar{z}^2\)
- \(-4 \bar{z}\)
Complex Numbers, SPEC1 2023 VCAA 2
Consider the complex number \(z=(b-i)^3\), where \(b \in R^{+}\).
Find \(b\) given that \(\arg (z)=-\dfrac{\pi}{2}\). (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Complex Numbers, SPEC2 2021 VCAA 6 MC
If `z ∈ C, z != 0` and `z^2 ∈ R`, then the possible values of `text(arg)(z)` are
- `(kpi)/2, k ∈ Z`
- `kpi, k ∈ Z`
- `((2k + 1)pi)/2, k ∈ Z`
- `((4k + 1)pi)/2, k ∈ Z`
- `((4k - 1)pi)/2, k ∈ Z`
Complex Numbers, SPEC2 2019 VCAA 6 MC
Let `z, w ∈ C`, where `text(Arg)(z) = pi/2` and `text(Arg)(w) = pi/4`.
The value of `text(Arg)((z^5)/(w^4))` is
- `−pi/2`
- `pi/2`
- `pi`
- `(5pi)/2`
- `(7pi)/2`
Complex Numbers, SPEC2 2012 VCAA 6 MC
For any complex number `z`, the location on an Argand diagram of the complex number `u = i^3 bar z` can be found by
A. rotating `z` through `(3 pi)/2` in an anticlockwise direction about the origin
B. reflecting `z` about the `x`-axis and then reflecting about the `y`-axis
C. reflecting `z` about the `y`-axis and then rotating anticlockwise through `pi/2` about the origin
D. reflecting `z` about the `x`-axis and then rotating anticlockwise through `pi/2` about the origin
E. rotating `z` through `(3 pi)/2` in a clockwise direction about the origin
Complex Numbers, SPEC2 2012 VCAA 5 MC
If `z = sqrt 2 text(cis)(-(4 pi)/5)` and `w = z^9`, then
A. `w = 16 sqrt 2 text(cis)((36 pi)/5)`
B. `w = 16 sqrt 2 text(cis)(−pi/5)`
C. `w = 16 sqrt 2 text(cis)((4pi)/5)`
D. `w = 9 sqrt 2 text(cis)(-pi/5)`
E. `w = 9 sqrt 2 text(cis)((4pi)/5)`
Complex Numbers, SPEC2 2013 VCAA 8 MC
The principal arguments of the solutions to the equation `z^2 = 1 + i` are
- `pi/8` and `(9pi)/8`
- `−pi/8` and `(7pi)/8`
- `−(7pi)/8` and `pi/8`
- `(7pi)/8` and `(15pi)/8`
- `−(3pi)/4` and `pi/4`
Complex Numbers, SPEC2 2013 VCAA 7 MC
If `z = r text(cis)(theta)`, then `(z^2)/barz` is equivalent to
A. `r^3text(cis)(3theta)`
B. `r^3text(cis)(−theta)`
C. `2text(cis)(3theta)`
D. `r^3text(cis)(theta)`
E. `rtext(cis)(3theta)`
Complex Numbers, SPEC1 2016 VCAA 6
Write `(1 - sqrt 3 i)^4/(1 + sqrt 3 i)` in the form `a + bi`, where `a` and `b` are real constants. (3 marks)
Complex Numbers, SPEC2 2015 VCAA 7 MC
If `z = sqrt3 + 3i`, then `z^63` is
- real and negative
- equal to a negative real multiple of `i`
- real and positive
- equal to a positive real multiple of `i`
- a positive real multiple of `1 + isqrt3`
Complex Numbers, SPEC2 2015 VCAA 5 MC
Given `z = (1 + isqrt3)/(1 + i)`, the modulus and argument of the complex number `z^5` are respectively
- `2sqrt2` and `(5pi)/6`
- `4sqrt2` and `(5pi)/12`
- `4sqrt2` and `(7pi)/12`
- `2sqrt2` and `(5pi)/12`
- `4sqrt2` and `-pi/12`
Complex Numbers, SPEC2 2014 VCAA 5 MC
If the complex number `z` has modulus `2sqrt2` and argument `(3pi)/4`, then `z^2` is equal to
- `−8i`
- `4i`
- `−2sqrt2i`
- `2sqrt2i`
- `−4i`
Complex Numbers, SPEC1 2018 VCAA 2
- Show that `1 + i = sqrt 2\ text(cis)(pi/4)`. (1 mark)
- Evaluate `(sqrt 3 - i)^10/(1 + i)^12`, giving your answer in the form `a + bi`, where `a, b ∈ R`. (3 marks)