SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, SPEC2 2024 VCAA 2

  1. Express the relation  \(\abs{z-z_1}=\abs{z-z_2}\)  in the form  \(y=m x+c\), where  \(x, y, m, c \in R\), \(z=x+i y, \ z_1=1+2 i\)  and  \(z_2=4\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. The line segment from  \(z_1=1+2 i\)  to  \(z_2=4\)  is the diameter of a circle.
  3. Find the equation of this circle in the form \(\abs{z-z_c}=r\), where \(z_c\) is the centre of the circle and \(r\) is the radius.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. A second circle is given by  \(\abs{z-(1+2 i)}=2\).
  5. Sketch this circle on the Argand diagram below, labelling the imaginary axis intercepts with their values.  (2 marks)
     

     

--- 2 WORK AREA LINES (style=lined) ---

  1. A ray originating at the point  \(z=2-i\)  passes through the point  \(z=-2+3 i\),  cutting the second circle into two segments.
    1. Sketch the ray on the Argand diagram provided in part c.  (1 mark)

      --- 0 WORK AREA LINES (style=lined) ---

    2. Find the equation of the ray in the form \(\operatorname{Arg}\left(z-z_0\right)=\theta\)  where  \(z_0 \in C\) and \(\theta\) is measured in radians in terms of \(\pi\).  (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  2. Find the area of the minor segment formed by the intersection of the ray and the circle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(y=\dfrac{3}{2} x-\dfrac{11}{4}\)

b.    \(\abs{z-\left(\dfrac{5}{2}+i\right)} = \dfrac{\sqrt{13}}{2}\)

c.    

d.i.    \(\text{See image above}\)

d.ii.   \(\operatorname{Arg}(z-2+i)=\dfrac{3 \pi}{4}\)

e.   \(A=\pi-2\)

Show Worked Solution

a.    \(\text{Method 1}\)

\(z_1=1+2i, \quad z_2=4\)

\(\abs{z-z_1}=\abs{z-z_2}\)

\(\text{Equation can be written:}\)

\((x-1)^2+(y-2)^2\) \(=(x-4)^2+y^2\)
\(-2x-4y+5\) \(=-8x+16 \ \ \ \text{(all squares cancel)}\)
\(6x+4y\) \(=11\)
\(y\) \(=\dfrac{3}{2} x-\dfrac{11}{4}\)

 
\(\text{Method 2}\)

\(\text {Find line of points equidistant from \(\ z_1\)  and  \(z_2\)}\)

\(m_{\text{line}\ z_1 z_2}=\dfrac{0-2}{4-1}=\dfrac{-2}{3}\)

\(m_{\perp}=\dfrac{3}{2}\)

\(\text{Mid point} \  z_1 z_2 =\dfrac{5+2i}{2}=\left(\dfrac{5}{2},1\right)\)

\(\perp \ \text{bisector:} \ m=\dfrac{3}{2}, \ \text{passes through} \ \left(\dfrac{5}{2}, 1\right)\)

\(y-1\) \(=\dfrac{3}{2}\left(x-\dfrac{5}{2}\right)\)
\(y\) \(=\dfrac{3}{2} x-\dfrac{11}{4}\)

 

b.    \(\text{Centre of circle }=\text {midpoint}\left(z_1 z_2\right)\)

\(z_c=\dfrac{z_1+z_2}{2}=\dfrac{5+2 i}{2}=\dfrac{5}{2}+i\)
 

\(\text{Radius}(r)=\dfrac{1}{2} \times \text{diameter}\)

\(r=\dfrac{1}{2} \sqrt{(4-1)^2+(0-2)^2}=\dfrac{\sqrt{13}}{2}\)
 

\(\text{Circle equation:}\)

\(\abs{z-\left(\dfrac{5}{2}+i\right)} = \dfrac{\sqrt{13}}{2}\)
 

c.    \(\text{Find \(y\)-axis intercepts \((z=y i)\):}\)

\(4=\abs{z-(1+2i)}^2=\abs{yi-(1+2i)}^2=(-1)^2+(y-2)^2\)

\(y^2-4y+1=0 \ \Rightarrow \ =2 \pm \sqrt{3}\)
 

d.i.    \(\text{See image above}\)

d.ii.   \(\operatorname{Arg}(z-2+i)=\dfrac{3 \pi}{4}\)

Mean mark (d.ii.) 56%.

e.    \(\text{Circle radius}=2\)

\(\text{Angle subtending minor segment}=\dfrac{\pi}{2}\)

\(A=\dfrac{r^2}{2}(\theta-\sin \theta)=2\left(\dfrac{\pi}{2}-1\right)=\pi-2\)

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, smc-1173-10-Circles, smc-1173-30-Sketch regions, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2024 VCAA 5 MC

If the point  \(z=1+\sqrt{3} i\)  is represented on an Argand diagram, the point representing  \(-\bar{z}\)  can be located by

  1. reflecting the point representing \(z\) in the real axis.
  2. rotating the point representing \(z\) anticlockwise about the origin by 90\(^{\circ}\).
  3. reflecting the point representing \(z\) in the imaginary axis.
  4. rotating the point representing \(z\) clockwise about the origin by 90\(^{\circ}\).
Show Answers Only

\(C\)

Show Worked Solution

\(z=1+\sqrt{3}i\ \ \Rightarrow\ \ \bar{z} = 1-\sqrt{3}i\)

\(-\bar{z} = -1+\sqrt{3}i\)

\(\therefore \text{It is a reflection of}\ z\ \text{in the imaginary axis.}\)

\(\Rightarrow C\)

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 4, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2022 VCAA 2

Two complex numbers \(u\) and \(v\) are given by  \(u=a+i\)  and  \(v=b-\sqrt{2}i\), where \(a, b \in R\).

  1.  i. Given that  \(uv=(\sqrt{2}+\sqrt{6})+(\sqrt{2}-\sqrt{6})i\), show that  \(a^2+(1-\sqrt{3}) a-\sqrt{3}=0\).   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2. ii. One set of possible values for \(a\) and \(b\) is  \(a=\sqrt{3}\)  and  \(b=\sqrt{2}\).
  3.     Hence, or otherwise, find the other set of possible values.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. Plot and label the points representing  \(u=\sqrt{3}+i\)  and  \(v=\sqrt{2}-\sqrt{2}i\)  on the Argand diagram below.
     

--- 0 WORK AREA LINES (style=lined) ---

  1. The ray given by  \(\text{Arg}(z)=\theta\)  passes through the midpoint of the line interval that joins the points  \(u=\sqrt{3}+i\)  and  \(v=\sqrt{2}-\sqrt{2}i\).
  2. Find, in radians, the value of \(\theta\) and plot this ray on the Argand diagram in part b.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. The line interval that joins the points  \(u=\sqrt{3}+i\)  and  \(v=\sqrt{2}-\sqrt{2}i\)  cuts the circle  \(|z|=2\)  into a major and a minor segment.
  4. Find the area of the minor segment, giving your answer correct to two decimal places.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.i.  \(\text{See worked solutions.}\)

a.ii.  \(a=-1, \ b=-\sqrt{6}\)

b.   
       

c.   \(\theta=-\dfrac{\pi}{24}\)

d.    \(0.69\ \text{u}^2\)

Show Worked Solution

a.i.  \(u v=(\sqrt{2}+\sqrt{6})+(\sqrt{2}-\sqrt{6}) i\)

\begin{aligned}
(a+i)(b-\sqrt{2} i) & =a b-\sqrt{2} a i+b i+\sqrt{2} \\
& =a b+\sqrt{2}+(b-\sqrt{2}a) i
\end{aligned}

\(\text {Equating co-efficients: }\)

  \(ab=\sqrt{6} \ \Rightarrow \ b=\dfrac{\sqrt{6}}{a}\ \cdots\ \text {(1)}\)

  \(b-\sqrt{2} a=\sqrt{2}-\sqrt{6}\ \cdots\ \text {(2)}\)

\(\text{Substitute (1) into (2):}\)

\(\dfrac{\sqrt{6}}{a}-\sqrt{2}a=\sqrt{2}-\sqrt{6}\)

\(\sqrt{6}-\sqrt{2} a^2=(\sqrt{2}-\sqrt{6}) a\)

\(\sqrt{2} a^2+(\sqrt{2}-\sqrt{6}) a-\sqrt{6}\) \(=0\)  
\(a^2+(1-\sqrt{3}) a-\sqrt{3}\) \(=0\)  
Mean mark (a) 54%.

 
a.ii.
\(\text{Solve } a^2+(1-\sqrt{3}) a-\sqrt{3}=0 \ \ \text{for}\  a :\)

\(a=\sqrt{3} \ \text{ or } -1\)

\(\therefore \text{ Other solution: } a=-1, \ b=-\sqrt{6}\)
 

b.   
       


c. 
  
\begin{aligned}
\theta & =\frac{\operatorname{Arg}(u)-\operatorname{Arg}(v)}{2} \\
& =\frac{1}{2}\left(\frac{\pi}{6}-\frac{\pi}{4}\right) \\
& =-\frac{\pi}{24}
\end{aligned}
♦ Mean mark (c) 39%.

d.   \(\text {Sector angle (centre) }=\dfrac{\pi}{6}+\dfrac{\pi}{4}=\dfrac{5 \pi}{12}\)

\(\text {Area of sector }=\dfrac{\frac{5 \pi}{12}}{2 \pi} \times \pi \times 2^2=\dfrac{5 \pi}{6}\)

\begin{aligned}
\text {Area of segment } & =\frac{5 \pi}{6}-\dfrac{1}{2} \times 2 \times 2 \times \sin \left(\dfrac{5 \pi}{6}\right) \\
& \approx 0.69\ \text{u} ^2
\end{aligned}

♦ Mean mark (d) 40%.

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 4, Band 5, smc-2597-20-Cartesian to Mod/Arg, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2021 VCAA 2

The polynomial  `p(z) = z^3 + alpha z^2 + beta z + gamma`, where  `z ∈ C`  and  `alpha, beta, gamma ∈ R`, can also be written as  `p(z) = (z-z_1)(z-z_2)(z-z_3)`, where  `z_1 ∈ R`  and  `z_2, z_3 ∈ C`.

  1.  i. State the relationship between `z_2` and `z_3`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. ii. Determine the values of `alpha, beta` and `gamma`, given that  `p(2) = -13, |z_2 + z_3| = 0`  and  `|z_2-z_3| = 6`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Consider the point  `z_4 = sqrt3 + i`.

  1. Sketch the ray given by  `text(Arg)(z-z_4) = (5pi)/6`  on the Argand diagram below.  (2 marks)
     
  2. The ray  `text(Arg)(z-z_4) = (5pi)/6`  intersects the circle  `|z-3i| = 1`, dividing it into a major and a minor segment.
  3.  i. Sketch the circle  `|z-3i| = 1` on the Argand diagram in part b.  (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  4. ii. Find the area of the minor segment.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `z_2 = barz_3`
    2. `alpha = -3, beta = 9, gamma = -27`
  1.  
     

     

c.i.   

c.ii.   `(2pi-3sqrt3)/12\ text(u²)`

Show Worked Solution

a.i.   `text(By conjugate root theory)`

`z_2 = barz_3`

 

a.ii.   `text(Let)\ \ z_1 = a + bi, \ z_2 = a-bi`

♦♦ Mean mark part (a.ii.) 35%.

`|z_2 + z_3| = |2a| = 0 \ => \ a = 0`

`|z_2-z_3| = |2b| = 6 \ => \ b = ±3`
 

`text(Using)\ \ p(2) = -13`

`(2-z_1)(2-3i)(2 + 3i)` `= -13`
`(2-z_1)(4 + 9)` `= -13`
`2-z_1` `= -1`
`z_1` `= 3`

 

`p(z)` `= (z-3)(z-3i)(z + 3i)`
  `= (z-3)(z^2 + 9)`
  `= z^3-3z^2 + 9z-27`

 
`:. alpha = –3, \ beta = 9, \ gamma = –27`

♦ Mean mark part (b) 45%.
MARKER’S COMMENT: Point of emanation is not part of required ray (see open circle).

 

b. 

 

c.i.  

 

c.ii.   `text(Arg)(z-z_4) = (5pi)/6\ \ text(cuts)\ \ ytext(-axis at angle)\ pi/3`

♦♦ Mean mark part (c.ii.) 30%.

`=>\ text(angle at centre of segment) = pi/3\ (text(equilateral triangle))`

`text(Area)` `= (pi/3)/(2pi) xx pi xx 1^2-1/2 xx 1 xx 1 xx sin (pi/3)`
  `= pi/6-sqrt3/4`
  `= (2pi-3sqrt3)/12\ text(u²)`

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-10-Circles, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2012 VCAA 2

  1.  Given that  `cos(pi/12) = (sqrt (sqrt 3 + 2))/2`, show that  `sin(pi/12) = (sqrt (2-sqrt 3))/2`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Express  `z_1 = (sqrt(sqrt3 + 2))/2 + i(sqrt(2-sqrt3))/2`  in polar form.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. i.  Write down  `z_1^4`  in polar form.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. ii. On the Argand diagram below, shade the region defined by

`{z: text(Arg)(z_1) <= text(Arg)(z) <= text(Arg)(z_1^4)} ∩ {z: 1 <= |\ z\ | <= 2}, z ∈ C`.   (2 marks)

--- 0 WORK AREA LINES (style=lined) ---


 

  1.  Find the area of the shaded region in part c.   (2 marks) 

    --- 5 WORK AREA LINES (style=lined) ---

  2. i.  Find the value(s) of `n` such that  `text(Re)(z_1^n) = 0`, where  `z_1 = (sqrt(sqrt3 + 2))/2 + i(sqrt(2-sqrt3))/2`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. ii. Find  `z_1^n`  for the value(s) of `n` found in part i.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions.)`
  2. i.  `z_1 = text(cis) pi/12`

     

    ii.  `z_1^4 = text(cis) pi/3`

  3. `text(See Worked Solutions.)`
  4. `(3pi)/8`
  5. i.  `n = (2k + 1)6`

     

    ii.  `z_1^n = ±i\ text(for)\ k ∈ Z`

Show Worked Solution
a.    `cos^2(pi/12) + sin^2(pi/12)` `= 1`
  `sin^2(pi/12)` `= 1-(sqrt 3 + 2)/4`
    `= (2-sqrt 3)/4`

 
`:. sin (pi/12) = sqrt(2-sqrt 3)/2,\ \ \ (sin (pi/12) > 0)`

 

b.i.    `z_1` `= cos(pi/12) + i sin (pi/12)`
    `= text(cis)(pi/12)`

 

b.ii.    `z_1^4` `= 1^4 text(cis) ((4 pi)/12)`
    `= text(cis)(pi/3)`

 

c.   

 

d.  `text(Area of large sector)`

Mean mark 51%.

`=theta/(2pi) xx pi r^2`

`=(pi/3-pi/12)/(2pi) xx pi xx 2^2`

`=pi/2`
  

`text(Area of small sector)`

`=1/2 xx pi/4 xx 1`

`=pi/8`

 
`:.\ text(Area shaded)`

`= pi/2-pi/8`

`= (3 pi)/8`
 

♦ Mean mark (e)(i) 34%.

e.i.    `z_1^n` `= 1^n text(cis) ((n pi)/12)`
  `text(Re)(z_1^n)` `= cos((n pi)/12) = 0`
  `(n pi)/12` `=cos^(-1)0 +2pik,\ \ \ k in ZZ`
  `(n pi)/12` `= pi/2 + k pi`
  `n` `= 6 + 12k,\ \ \ k in ZZ`

 

e.ii.  `text(When)\ \ n=(6 + 12k):`

♦ Mean mark (e)(ii) 36%.

  `z_1^n` `= 1^(6 + 12k) text(cis) (((6 + 12k)pi)/12), quad k in ZZ`
    `= i xx sin (((6 + 12k)pi)/12)`
    `= i xx sin (pi/2 + k pi)`

 
`text(If)\ \ k=0  or text(even,)\ \ z_1^n=i`

`text(If)\ \ k\ text(is odd,)\ \ z_1^n=-i`

`:. z_1^n = +-i,\ \ \ k in ZZ`

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-30-Sketch regions, smc-2597-20-Cartesian to Mod/Arg, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2012 VCAA 6 MC

For any complex number `z`, the location on an Argand diagram of the complex number  `u = i^3 bar z`  can be found by

A.   rotating `z` through `(3 pi)/2` in an anticlockwise direction about the origin

B.   reflecting `z` about the `x`-axis and then reflecting about the `y`-axis

C.   reflecting `z` about the `y`-axis and then rotating anticlockwise through `pi/2` about the origin

D.   reflecting `z` about the `x`-axis and then rotating anticlockwise through `pi/2` about the origin

E.   rotating `z` through `(3 pi)/2` in a clockwise direction about the origin

Show Answers Only

`C`

Show Worked Solution

`z -> bar z:\ text(reflect in)\ x text(-axis)`

`x+iy\ \ =>\ \ x-iy`

`bar z -> i^3 bar z:\ text(rotate)\ 90^@ xx 3\ text(anticlockwise, or)\ 90^@\ text(clockwise)`

`i^3 bar z` `= i^3 (x – iy)`
  `= -i(x – iy)`
  `= -y – ix `

 
`text(Consider option)\ C:`

♦♦ Mean mark 37%.

`z\ text(reflected about)\ y text(-axis)`

`-x + iy`

`text(then rotated)\ pi/2\ text(anticlockwise)`

`i(-x + iy)` `= -ix + i^2y`  
  `= -y – ix`  ✔  

 
`=> C`

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 5, smc-2597-50-Mod/Arg and powers, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2016 VCAA 5 MC

If   `text(Arg) (-1 + ai) = -(2 pi)/3`, then the real number  `a`  is

  1. `-sqrt 3`
  2. `-sqrt 3/2`
  3. `-1/sqrt 3`
  4. `1/sqrt 3`
  5. `sqrt 3` 
Show Answers Only

`A`

Show Worked Solution

`z\ \ text(is in the 3rd quandrant)`

`=> a < 0`

`-pi + tan^(-1) (|a|/1)` `= -(2 pi)/3`
` tan^(-1)(|a|)` `= pi/3`

 
`|a| = sqrt 3`

`:.  a = -sqrt 3` 

`=>  A`

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 4, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2015 VCAA 9 MC

Let  `z_1 = r_1 text(cis)(theta_1)`  and  `z_2 = r_2 text(cis)(theta_2)`, where  `z_1`  and  `z_1z_2`  are shown in the Argand diagram below;  `theta_1`  and  `theta_2`  are acute angles.
 

SPEC2 2015 VCAA 9 MC
 

A statement that is necessarily true is

A.   `r_2 > 1`

B.   `theta_1 < theta_2`

C.   `|\ (z_1)/(z_2)\ | > r_1`

D.   `theta_1 = theta_2`

E.   `r_1 > 1`

Show Answers Only

`C`

Show Worked Solution

`text(Consider each option:)`

♦ Mean mark 47%.

`A:\ \ r_1r_2 < r_1\ \ =>\ \ r_2 < 1`

`B:`

`alpha + pi/2 – theta_1 = theta_2 ~~ theta_1\ \ text(not necessarily true)`

`C:\ \ (r_1)/(r_2) = (|\ z_1\ |)/(|\ z_2\ |) = |(z_1)/(z_2)|`

`text(S)text(ince)\ \ r_2<1\ \ =>\ \ |(z_1)/(z_2)| > r_1`

`D:\ \ theta_1 = theta_2\ \ text(possible but no scale given)`

`E:\ \ r_1>1\ \ text(possible but no scale given.)`

 

`=> C`

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 5, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2-NHT 2018 VCAA 4 MC

On the Argand diagram shown above, `4 text(cis)(-(2pi)/3)`  is represented by the point

  1. `P`
  2. `Q`
  3. `R`
  4. `S`
  5. `T`
Show Answers Only

`D`

Show Worked Solution

`text(Point is in 3rd quadrant, and)\ \ r = 4.`

`text(Consider:)\  R, S, T`

`r_R` `~~ sqrt((-1)^2 + (-1.75)^2)`
  `~~ 2.02 < 4`

 
`r_T > sqrt((-2)^2 + (-4)^2)`

`r_T > sqrt 20> 4`

 
`text(By elimination, point must be)\ \ S.` 

`=>   D`

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, smc-2597-60-Argand diagrams

Copyright © 2014–2025 SmarterEd.com.au · Log in