Butanoic acid is a natural product and a component of human sweat.
Calculate the value of \(\ce{$K_{a}$}\) for butanoic acid if a 0.10 mol L–1 solution has a pH of 2.9 at 298 K. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Butanoic acid is a natural product and a component of human sweat.
Calculate the value of \(\ce{$K_{a}$}\) for butanoic acid if a 0.10 mol L–1 solution has a pH of 2.9 at 298 K. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\ce{$K_{a}$ = 1.6 \times 10^{-5}}\)
\(\ce{C3H7COOH(aq) \rightleftharpoons C3H7COO^-(aq) + H^+(aq)}\) \[\ce{$K_{a}$ = \frac{[C3H7COO^-][H^+]}{[C3H7COOH]}}\]
\(\ce{[H^+]}\) | \(\ce{= 10^{-pH}}\) | |
\(\ce{= 10^{-2.9}}\) | ||
\(\ce{= 1.26 \times 10^{-3} mol L^{-1}}\) |
\begin{array} {|l|c|c|c|}
\hline & \ce{[C3H7COOH]} & \ce{[C3H7COO^-]} & \ce{[H^+]} \\
\hline \text{Initial} & 0.10 & 0 & 0 \\
\hline \text{Change} & -1.26 \times 10^{-3} & +1.26 \times 10^{-3} & +1.26 \times 10^{-3} \\
\hline \text{Equilibrium} & 0.0987 & 1.26 \times 10^{-3} & 1.26 \times 10^{-3} \\
\hline \end{array}
`K_(a)` | `=(1.26 xx10^-3)^2/(0.0987)` | |
`=1.6 xx10^(-5)` |
The relationship between the acid dissociation constant, `K_a`, and the corresponding conjugate base dissociation constant, `K_b`, is given by:
`K_(a)xxK_(b)=K_(w)`
Assume that the temperature for part (a) and part (b) is 25°C.
--- 2 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
a. `K_(a)xxK_(b)=K_(w)\ \ =>\ \ K_b=(K_(w))/(K_(a))`
`K_b` | `=(1.0 xx 10^{-14})/(3.0 xx 10^{-8}` | |
`=3.3 xx 10^{-7}` |
b. \(\ce{OCl-(aq) + H2O(l) \rightleftharpoons HOCl(aq) + OH-(aq)}\)
\begin{array} {|l|c|c|c|}
\hline & \ce{OCl-} & \ce{HOCl} & \ce{OH–} \\
\hline \text{Initial} & 0.20 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 0.20-x & x & x \\
\hline \end{array}
\[ K_b = \ce{\frac{[HOCl][OH– ]}{[OCl-]}} = \frac{x^2}{(0.20-x)} \]
Assume `0.20-x~~0.20` because `x` is negligible:
`3.3 xx 10^(-7)` | `= x^2 / (0.20-x)` | |
`x` | `=sqrt(3.3 xx 10^(−7) xx 0.20)` | |
`= 2.5690 xx 10^{-4}\ text{mol L}^(–1)` |
\(\ce{[OH-] = 2.5690 \times 10^{-4} mol L^{-1}}\)
\(\ce{pOH = -log10[OH-] = -log10(2.5690 \times 10^{-4}) = 3.59}\)
\(\therefore \ce{pH = 14-3.59 = 10.41}\)
Excess solid calcium hydroxide is added to a beaker containing 0.100 L of 2.00 mol L¯1 hydrochloric acid and the mixture is allowed to come to equilibrium.
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
a. \(\ce{Ca(OH)2 (s) + 2 HCl (aq) -> CaCl2 (aq) + 2 H2O (l)}\)
`text{n(HCl)} = text{c} xx text{V} = 2.00 xx 0.100 = 0.200\ text{mol}`
\[\ce{n(Ca(OH)2) = \frac{n(HCL)}{2} = \frac{0.200}{2}= 0.100 mol}\]
b. `text{pH} = 11.35`
a. \(\ce{Ca(OH)2 (s) + 2 HCl (aq) -> CaCl2 (aq) + 2 H2O (l)}\)
`text{n(HCl)} = text{c} xx text{V} = 2.00 xx 0.100 = 0.200\ text{mol}`
\[\ce{n(Ca(OH)2) = \frac{n(HCL)}{2} = \frac{0.200}{2}= 0.100 mol}\]
b. \(\ce{Ca(OH)2(s) \rightleftharpoons Ca^2+ (aq) + 2 OH– (aq)}\)
`[text{Ca}^(2+)] = text{n} / text{V} = 0.100 / 0.100 = 1.00\ text{mol L}^-1`
\(\ce{K_{sp}}\) | \( \ce{= [Ca^2+][OH– ]^2}\) | |
`5.02 xx 10^(-6)` | `= 1.00 xx [text{OH}^– ]^2` | |
`[text{OH}^– ]` | `=sqrt{5.02 xx 10^(-6)}` | |
`=2.24 xx 10^(−3)\ text{mol L}^(-1)` | ||
`text{pOH }` | `= −log_10(2.24 xx 10^(-3))` | |
`= 2.650` |
`:.\ text{pH} = 14-2.650 = 11.35`
A student makes up a solution of propan-2-amine in water with a concentration of 1.00 mol L ¯1.
--- 5 WORK AREA LINES (style=lined) ---
a.
b.
\begin{array} {|l|c|c|c|}
\hline & \ce{C3H7NH2} & \ce{C3H7NH3} & \ce{OH–} \\
\hline \text{Initial} & 1.00 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 1.00-x & x & x \\
\hline \end{array}
\[ K_b = \ce{\frac{[C3H7NH3+][OH– ]}{[C3H7NH2 ]}} = \frac{x^2}{(1.00-x)} \]
Assume `1.00-x=1.00` because `x` is negligible:
`4.37 xx 10^(−4)` | `= x^2 / 1.00` | |
`x` | `=sqrt(4.37 xx 10^(−4))` | |
`= 0.0209\ text{mol L}^(–1)` |
`=> [text{OH}^– ] = 0.0209\ text{mol L}^(–1)`
a.
b.
\begin{array} {|l|c|c|c|}
\hline & \ce{C3H7NH2} & \ce{C3H7NH3} & \ce{OH–} \\
\hline \text{Initial} & 1.00 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 1.00-x & x & x \\
\hline \end{array}
\[ K_b = \ce{\frac{[C3H7NH3+][OH– ]}{[C3H7NH2 ]}} = \frac{x^2}{(1.00-x)} \]
Assume `1.00-x=1.00` because `x` is negligible:
`4.37 xx 10^(−4)` | `= x^2 / 1.00` | |
`x` | `=sqrt(4.37 xx 10^(−4))` | |
`= 0.0209\ text{mol L}^(–1)` |
`=> [text{OH}^– ] = 0.0209\ text{mol L}^(–1)`
The equation for the autoionisation of water is shown.
\( \ce{2H2O(l) \rightleftharpoons \ H3O+(aq) + OH-(aq)} \)
At 50°C the water ionisation constant, `K_(w)`, is `5.5 xx10^(-14)`.
What is the pH of water at 50°C?
`B`
\(\ce{$K_w$ = [H3O+][OH–]}\)
Since \(\ce{[H3O+] = [OH–]}\):
`[text{H}_3 text{O}^+]^2` | `=5.5 xx 10^(−14)` | |
`[text{H}_3 text{O}^+]` | `= 2.3 xx 10^(−7}\ text{mol L}^(–1)` |
`text{pH = −log}_(10) (2.3 xx 10^(−7) ) = 6.63`
`=> B`