SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

CHEMISTRY, M6 2019 HSC 27

The relationship between the acid dissociation constant, `K_a`, and the corresponding conjugate base dissociation constant, `K_b`, is given by:

`K_(a)xxK_(b)=K_(w)`

Assume that the temperature for part (a) and part (b) is 25°C.

  1. The `K_a` of hypochlorous acid `text{(HOCl)}` is  `3.0 xx10^(-8)`.
  2. Show that the `K_b` of the hypochlorite ion, `text{OCl}^-`, is  `3.3 xx10^(-7)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. The conjugate base dissociation constant, `K_b`, is the equilibrium constant for the following equation:
  4.      `text{OCl}^(-)(aq)+ text{H}_(2) text{O}(l) ⇌ text{HOCl}(aq)+ text{OH}^(-)(aq)`
  5. Calculate the pH of a 0.20 mol L¯1 solution of sodium hypochlorite `(text{NaOCl})`.   (4 mark)

    --- 14 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `K_b=3.3 xx 10^{-7}`
  2. \(\ce{pH = 14-3.59 = 10.41}\)
Show Worked Solution

a.   `K_(a)xxK_(b)=K_(w)\ \ =>\ \ K_b=(K_(w))/(K_(a))`

`K_b=(1.0 xx 10^{-14})/(3.0 xx 10^{-8}=3.3 xx 10^{-7}`
 

b.   \(\ce{OCl-(aq) + H2O(l) \rightleftharpoons HOCl(aq) + OH-(aq)}\)
 

\begin{array} {|l|c|c|c|}
\hline  & \ce{OCl-} & \ce{HOCl} & \ce{OH–} \\
\hline \text{Initial} & 0.20 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 0.20-x & x & x \\
\hline \end{array}

 
\[ K_b = \ce{\frac{[HOCl][OH– ]}{[OCl-]}} = \frac{x^2}{(0.20-x)} \]

Assume  `0.20-x~~0.20`  because `x` is negligible:

`3.3 xx 10^(-7)` `= x^2 / (0.20-x)`  
`x` `=sqrt(3.3 xx 10^(−7) xx 0.20)`  
  `= 2.5690 xx 10^{-4}\ text{mol L}^(–1)`  

 
\(\ce{[OH-] = 2.5690 \times 10^{-4} mol L^{-1}}\)

\(\ce{pOH = -log10[OH-] = -log10(2.5690 \times 10^{-4}) = 3.59}\)

\(\therefore \ce{pH = 14-3.59 = 10.41}\)


♦ Mean mark (b) 45%.

Filed Under: Bronsted-Lowry Theory, Equilibrium Constant, Quantitative Analysis Tagged With: Band 4, Band 5, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given, smc-3671-40-K(eq) and pH, smc-3671-50-Acids and bases, smc-3674-10-Calculations Involving pH, smc-3675-30-Ka/Kb

CHEMISTRY, M6 2020 HSC 33

Excess solid calcium hydroxide is added to a beaker containing 0.100 L of 2.00 mol L¯1 hydrochloric acid and the mixture is allowed to come to equilibrium.

  1. Show that the amount (in mol) of calcium hydroxide that reacts with the hydrochloric acid is 0.100 mol.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. It is valid in this instance to make the simplifying assumption that the amount of calcium ions present at equilibrium is equal to the amount generated in the reaction in part (a).
  3. Calculate the pH of the resulting solution.   (4 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\ce{Ca(OH)2 (s) + 2 HCl (aq) -> CaCl2 (aq) + 2 H2O (l)}\)

`text{n(HCl)} = text{c} xx text{V} = 2.00 xx 0.100  = 0.200\ text{mol}`

\[\ce{n(Ca(OH)2) = \frac{n(HCL)}{2} = \frac{0.200}{2}= 0.100 mol}\]  

b.   `text{pH} = 11.35`

Show Worked Solution

a.   \(\ce{Ca(OH)2 (s) + 2 HCl (aq) -> CaCl2 (aq) + 2 H2O (l)}\)

`text{n(HCl)} = text{c} xx text{V} = 2.00 xx 0.100  = 0.200\ text{mol}`

\[\ce{n(Ca(OH)2) = \frac{n(HCL)}{2} = \frac{0.200}{2}= 0.100 mol}\]  

b.   \(\ce{Ca(OH)2(s) \rightleftharpoons Ca^2+ (aq) + 2 OH– (aq)}\)

`[text{Ca}^(2+)] = text{n} / text{V} = 0.100 / 0.100 = 1.00\ text{mol L}^-1`
 

\(\ce{K_{sp}}\) \( \ce{= [Ca^2+][OH– ]^2}\)  
`5.02 xx 10^(-6)` `= 1.00 xx [text{OH}^– ]^2`  
`[text{OH}^– ]` `=sqrt{5.02 xx 10^(-6)}=2.24 xx 10^(−3)\ text{mol L}^(-1)`  
`text{pOH }` `= −log_10(2.24 xx 10^(-3))= 2.650`  

 
`:.\ text{pH} = 14-2.650 = 11.35`


♦♦♦ Mean mark (b) 20%.

Filed Under: Bronsted-Lowry Theory, Equilibrium Constant Tagged With: Band 3, Band 6, smc-3671-10-Find K(eq), smc-3671-30-Deduce chemical equation, smc-3671-40-K(eq) and pH, smc-3671-50-Acids and bases, smc-3674-10-Calculations Involving pH

CHEMISTRY, M5 2020 HSC 27

A student makes up a solution of propan-2-amine in water with a concentration of 1.00 mol L ¯1.

  1. Using structural formulae, complete the equation for the reaction of propan-2-amine with water.   (2 marks)
     
         
  2. The equilibrium constant for the reaction of propan-2-amine with water is  `4.37 xx10^(-4)`.
  3. Calculate the concentration of hydroxide ions in this solution.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   

   

b.   

\begin{array} {|l|c|c|c|}
\hline  & \ce{C3H7NH2} & \ce{C3H7NH3} & \ce{OH–} \\
\hline \text{Initial} & 1.00 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 1.00-x & x & x \\
\hline \end{array}

 
\[ K_b = \ce{\frac{[C3H7NH3+][OH– ]}{[C3H7NH2 ]}} = \frac{x^2}{(1.00-x)} \]

Assume `1.00-x=1.00` because `x` is negligible:

`4.37 xx 10^(−4)` `= x^2 / 1.00`  
`x` `=sqrt(4.37 xx 10^(−4))`  
  `= 0.0209\ text{mol L}^(–1)`  

 
`=> [text{OH}^– ] = 0.0209\ text{mol L}^(–1)`

Show Worked Solution

a.   

   


♦ Mean mark (a) 48%.

b.   

\begin{array} {|l|c|c|c|}
\hline  & \ce{C3H7NH2} & \ce{C3H7NH3} & \ce{OH–} \\
\hline \text{Initial} & 1.00 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 1.00-x & x & x \\
\hline \end{array}

 
\[ K_b = \ce{\frac{[C3H7NH3+][OH– ]}{[C3H7NH2 ]}} = \frac{x^2}{(1.00-x)} \]

Assume `1.00-x=1.00` because `x` is negligible:

`4.37 xx 10^(−4)` `= x^2 / 1.00`  
`x` `=sqrt(4.37 xx 10^(−4))`  
  `= 0.0209\ text{mol L}^(–1)`  

 
`=> [text{OH}^– ] = 0.0209\ text{mol L}^(–1)`


Mean mark (b) 51%.

Filed Under: Bronsted-Lowry Theory, Equilibrium Constant, Reactions of Organic Acids and Bases Tagged With: Band 5, smc-3671-20-Calcs given K(eq), smc-3671-40-K(eq) and pH, smc-3671-50-Acids and bases, smc-3674-10-Calculations Involving pH, smc-3674-18-Dissociation in Water, smc-3680-60-Reactions of Organic Acids and Bases

Copyright © 2014–2025 SmarterEd.com.au · Log in