SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

CHEMISTRY, M5 2024 HSC 32

Calculate the concentration of cadmium ions in a saturated solution of cadmium(\(\text{II}\)) phosphate,  \(\ce{Cd3\left(PO4\right)2}, \ K_{sp}=2.53 \times 10^{-33}\).   (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(3.56 \times 10^{-7}\ \text{mol L}^{-1}\)

Show Worked Solution

\(\ce{Cd3(PO4)2(s) \rightleftharpoons 3Cd^{2+}(aq) + 2PO4^{3-}(aq)}\)

\(\Rightarrow K_{sp} = \ce{[Cd^{2+}]^3[PO4^{3-}]^2} = 2.53 \times 10^{-33}\)

  • \(\text{Let the molar solubility of }\ce{Cd3(PO4)2} \text{ be } x\ \text{mol L}^{-1}\)
  • \(\ce{[Cd^{2+}]} = 3x,\ \ \ce{[PO4^{3-}]} = 2x\)
\(\ce{[Cd^{2+}]^3[PO4^{3-}]^2}\) \(=2.53 \times 10^{-33}\)  
\((3x)^3 \times (2x)^2\) \(=2.53 \times 10^{-33}\)  
\(108x^5\) \(=2.53 \times 10^{-33}\)  
\(x\) \(=\sqrt[5]{\dfrac{2.53 \times 10^{-33}}{108}}\)  
  \(=1.11856 \times 10^{-7}\)  

 

  • \(\ce{[Cd^{2+}]} = 3 \times 1.1186 \times 10^{-7} = 3.56 \times 10^{-7}\ \text{mol L}^{-1}\ \ \text{(3 sig.fig)}\)
♦ Mean mark 55%.

Filed Under: Solution Equilibria Tagged With: Band 5, smc-3672-20-Calcs given K(sp)

CHEMISTRY, M5 2023 HSC 17 MC

What mass of lead\(\text{(II)}\) iodide (MM = 461 g mol\(^{-1}\)) will dissolve in 375 mL of water?

  1. 0.233 g
  2. 0.293 g
  3. 0.369 g
  4. 0.621 g
Show Answers Only

\(A\)

Show Worked Solution
  • \(\ce{PbI2 \rightleftharpoons Pb^2+ + 2I^-}\ \ \ \ \ \ \ K_{sp} = 9.8 \times 10^{-9}\ \text{(from data sheet)}\)
\(K_{sp}\) \(= \ce{[Pb^2+][ 2I^-]^2}\)   
\(9.8 \times 10^{-9}\) \(= [x][ 2x]^2\)  
\(x^3\) \(=\dfrac{9.8 \times 10^{-9}}{4}\)  
\(x\) \(=0.001348\ \text{mol L}^{-1}\)   

 
\(\text{Mass in 1 L}\ = 0.001348 \times 461 = 0.62147\ \text{g}\)

\(\text{Mass in 375 mL}\ = 0.62147 \times 0.375 = 0.233\ \text{g}\)

\(\Rightarrow A\)

Filed Under: Solution Equilibria Tagged With: Band 5, smc-3672-20-Calcs given K(sp)

CHEMISTRY, M5 2023 HSC 34

When 125 mL of a magnesium nitrate solution is mixed with 175 mL of a 1.50 mol L\(^{-1} \) sodium fluoride solution, 0.6231 g of magnesium fluoride (MM = 62.31 g mol\(^{-1} \)) precipitates. The \( K_{s p} \) of magnesium fluoride is 5.16 × 10\(^{-11} \).

Calculate the equilibrium concentration of magnesium ions in this solution.  (5 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

\(7.90 \times 10^{-11}\ \text{mol L}^{-1} \)

Show Worked Solution

\(\ce{MgF2(s) \rightleftharpoons Mg^{2+}(aq) + 2F-(aq)}\)

\(\ce{n(MgF2) = \dfrac{\text{m}}{\text{MM}} = \dfrac{0.6231}{62.31} = 1.000 \times 10^{-2} \text{mol}} \)

\(\ce{n(F^{-})_{init} = c \times V = 1.50 \times 0.175 = 0.263\ \text{mol}} \)

\(\ce{n(F^{-})_{after} = 0.263-2 \times 1.00 \times 10^{-2} = 0.243\ \text{mol}} \) 

\(\ce{[F^{-}]_{after} = \dfrac{\text{n}}{\text{V}} = \dfrac{0.243}{0.300} = 0.808\ \text{mol L}^{-1}} \)

♦ Mean mark 45%.

\(K_{sp} = \ce{[Mg^{2+}][F^{-}]^2 }\)

\(\text{Since}\ K_{sp}\ \text{is small}\ \ \Rightarrow \text{assume}\ \ce{[F^{-}]_{eq} = 0.808\ \text{mol L}^{-1}} \)

\(\ce{[Mg^{2+}]_{eq} = \dfrac{5.16 \times 10^{-11}}{0.808^2} = 7.90 \times 10^{-11}\ \text{mol L}^{-1}} \)

Filed Under: Solution Equilibria Tagged With: Band 5, smc-3672-10-Mixed ionic solutions, smc-3672-20-Calcs given K(sp)

CHEMISTRY, M5 EQ-Bank 24

When a sample of solid silver chloride is added to a `1.00 xx10^(-2)` mol L−1 sodium chloride solution, only some of the silver chloride dissolves.

Calculate the equilibrium concentration of silver ions in the resulting solution, given that the `K_(sp)` of silver chloride is `1.8 xx10^(-10)`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\ce{[Ag^+] = 1.80 \times 10^{-8} mol L^{-1}}\)

Show Worked Solution

 \(\ce{AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq)}\)

\begin{array} {|l|c|c|c|}
\hline  & \ce{[AgCl(s)]} & \ce{[Ag^+(aq)]} & \ce{[Cl^-(aq)]} \\
\hline \text{Initial} &  & 0 & 1.00 \times 10^{-2} \\
\hline \text{Change} &  & +x & +x \\
\hline \text{Equilibrium} &  & x & 1.00 \times 10^{-2} +x \\
\hline \end{array}

\(\ce{Let \ $x$ = [Ag^+]}\)

\[\ce{$K_{sp}$ = [Ag^+][Cl^-]}\]

\(\ce{$K_{sp} = x$(1.00 \times 10^{-2} + $x$) = 1.80 \times 10^{-10}}\)

\(\ce{Since $x$\ is small, 1.00 \times 10^{-2} + $x$ ≈ 1.00 \times 10^{-2}}\)

\begin{aligned}
\ce{$x$(1.00 \times 10^{-2})} & \ce{= 1.80 \times 10^{-10}}  \\
\ce{$x$} & \ce{= 1.80 \times 10^{-8}}  \\
\ce{\therefore [Ag^+]} & \ce{= 1.80 \times 10^{-8} mol L^{-1}}  \\
\end{aligned}

Filed Under: Equilibrium Constant, Solution Equilibria Tagged With: Band 4, smc-3671-60-Ionic solutions, smc-3672-10-Mixed ionic solutions, smc-3672-20-Calcs given K(sp)

CHEMISTRY, M5 2022 HSC 31

Silver ions form the following complex with ammonia solution.

\( \ce{Ag+(aq) + 2NH3(aq) \rightleftharpoons [Ag(NH3)2]+(aq)}\)

The equilibrium constant is `1.6 × 10^(7)` at 25°C.

  1. In order to determine the free \( \ce{Ag+}\) concentration in an aqueous ammonia solution, a student carried out a precipitation titration with \( \ce{NaI(aq)}\) as the titrant.
  2. Evaluate the suitability of this method.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

  1. If 0.010% of the total silver ions in solution are present as \( \ce{Ag+(aq)}\) at equilibrium, calculate the equilibrium concentration of aqueous ammonia in this solution.   (4 marks)

--- 11 WORK AREA LINES (style=lined) ---

Show Answers Only

a.  The method is not suitable. 

  • Adding \( \ce{NaI}\) would cause the \( \ce{I-}\) ions to precipitate with the \( \ce{Ag+}\) ions to form \( \ce{AgI}\)
  •    \( \ce{AgI(s) \rightleftharpoons  Ag+(aq) + I- (aq)}\)
  • As a result, this would decrease \( \ce{[Ag+]}\), and disturb the equilibrium.
  • According to Le Chatelier’s Principle, the equilibrium will shift to the right in an attempt to counteract the change and increase \( \ce{[Ag+]}\).
  •    \( \ce{Ag+(aq) + 2NH3(aq) \rightleftharpoons [Ag(NH3)2]+(aq)}\)
  • As a result, \( \ce{[Ag(NH3)2]+}\) would shift to the left and increase \( \ce{[Ag+]} \). 

 
b.   
\({K_{eq}=\dfrac{\ce{[[Ag(NH3)2]+]}}{\ce{[Ag+][NH3]^2}}} \)

\[\ce {[[Ag(NH3)2]+] = \frac{99.99%}{0.010%} \times [Ag+] \ \ \ …\ (1)}\]

Substitute (1) into \(\ce {K_{eq}:}\)

`1.6 xx 10^7` `= [(99.99%) xx [text{Ag}^+ ]] / [(0.010%) xx [text{Ag}^+ ][text{NH}_3 ]^2]= [99.99%] / [0.010% [text{NH}_3 ]^2]`
`[text{NH}_3 ]^2` `=(99.99%)/(1.6 xx 10^7 xx 0.010%)`
`[text{NH}_3 ]` `=sqrt((99.99%)/(1.6 xx 10^7 xx 0.010%))= 0.025  text{mol L}^-1`

 
Therefore, the concentration of \(\ce {NH3}\) at equilibrium is 0.025 mol L¯1.

Show Worked Solution

a.  The method is not suitable. 

  • Adding \( \ce{NaI}\) would cause the \( \ce{I-}\) ions to precipitate with the \( \ce{Ag+}\) ions to form \( \ce{AgI}\)
  •    \( \ce{AgI(s) \rightleftharpoons  Ag+(aq) + I- (aq)}\)
  • As a result, this would decrease \( \ce{[Ag+]}\), and disturb the equilibrium.
  • According to Le Chatelier’s Principle, the equilibrium will shift to the right in an attempt to counteract the change and increase \( \ce{[Ag+]}\).
  •    \( \ce{Ag+(aq) + 2NH3(aq) \rightleftharpoons [Ag(NH3)2]+(aq)}\)
  • As a result, \( \ce{[Ag(NH3)2]+}\) would shift to the left and increase \( \ce{[Ag+]} \). 

♦ Mean mark (a) 40%.

b.   \({K_{eq}=\dfrac{\ce{[[Ag(NH3)2]+]}}{\ce{[Ag+][NH3]^2}}} \)

\[\ce {[[Ag(NH3)2]+] = \frac{99.99%}{0.010%} \times [Ag+] \ \ \ …\ (1)}\]

Substitute (1) into \(\ce {K_{eq}:}\)

`1.6 xx 10^7` `= [(99.99%) xx [text{Ag}^+ ]] / [(0.010%) xx [text{Ag}^+ ][text{NH}_3 ]^2]= [99.99%] / [0.010% [text{NH}_3 ]^2]`
`[text{NH}_3 ]^2` `=(99.99%)/(1.6 xx 10^7 xx 0.010%)`
`[text{NH}_3 ]` `=sqrt((99.99%)/(1.6 xx 10^7 xx 0.010%))= 0.025  text{mol L}^-1`

 
Therefore, the concentration of \(\ce {NH3}\) at equilibrium is 0.025 mol L¯1.


♦ Mean mark (b) 40%.

Filed Under: Solution Equilibria Tagged With: Band 5, smc-3672-20-Calcs given K(sp), smc-3672-25-Solubility rules

CHEMISTRY, M5 2022 HSC 19 MC

What is the molar solubility of iron(`text{II}`) hydroxide?

  1. `2.3 × 10^(-6)\ text{mol}\ text{L}^(-1)`
  2. `2.9 × 10^(-6)\ text{mol}\ text{L}^(-1)`
  3. `3.7 × 10^(-6)\ text{mol}\ text{L}^(-1)`
  4. `4.9 × 10^(-9)\ text{mol}\ text{L}^(-1)`
Show Answers Only

`A`

Show Worked Solution

`text{Fe(OH)}_2 (s) ⇌ text{Fe}^(2+) (aq) + 2 text{OH}^– (aq)`

Solids are not included in the `K_(sp)`  expression

\begin{array} {|l|c|c|}
\hline  & \text{Fe}^{2+} & \ \ \text{OH}^– \ \  \\
\hline \text{Initial} & 0 & 0  \\
\hline \text{Change} & + x & + 2x  \\
\hline \text{Equilibrium} & x & 2x \\
\hline \end{array}

`text{K}_(sp)` `= [text{Fe}^(2+)][text{OH}^–]^2`
`4.87 xx 10^(−17) ` `= x xx (2x)^2`
`4.87 xx 10^(−17)` `= 4x^3`
`:.x` `= root3((4.87 xx 10^(−17))/4)`
  `=2.30 xx 10^(−6)  text{mol L}^(–1)`

`=> A`


♦ Mean mark 45%.

Filed Under: Solution Equilibria Tagged With: Band 5, smc-3672-20-Calcs given K(sp), smc-3672-25-Solubility rules

CHEMISTRY, M5 2022 HSC 17 MC

A 2.0 g sample of silver carbonate (MM = 275.81 g mol ¯1) was added to 100.0 mL of water in a beaker. The solubility of silver carbonate at this temperature is `1.2 × 10^(-4)` mol L ¯1. It was then diluted by adding another 100.0 mL of water.

What is the ratio of the concentration of silver ions in solution before and after dilution?

  1. `1: 1`
  2. `1: 2`
  3. `2: 1`
  4. `4: 1`
Show Answers Only

`A`

Show Worked Solution

The maximum moles of `text{Ag}_2 text{CO}_3` that can be dissolved in 100.0 mL is:

`text{n(Ag}_2 text{CO}_3 text{)}_max` `= 1.2 × 10^(−4) xx 0.1000`
  `= 1.2 xx 10^(−5)  text{mol}`

 
The number of moles of silver carbonate added to the water is:

`text{n(Ag}_2 text{CO}_3)` `= text{m} / text{MM}`
  `= 2.0 / 275.81`
  `= 7.2514 xx 10 ^(-3)  text{mol}`
  •  Thus, the moles of `text{Ag}_2 text{CO}_3`  added is more than the maximum moles of `text{Ag}_2 text{CO}_3` able to be dissolved. i.e. the solution would be saturated before and after dilution.
  • As a result, the solution would have the same `text{Ag}_2 text{CO}_3` concentration before and after, thus, the ratio is 1:1.

`=> A`


♦♦♦ Mean mark 15%.

Filed Under: Solution Equilibria Tagged With: Band 6, smc-3672-20-Calcs given K(sp)

Copyright © 2014–2025 SmarterEd.com.au · Log in