A projectile is launched from point \(P\), with speed \(u\), at angle \(\theta\) to the horizontal. It lands at point \(Q\).
The time of flight of the projectile is \(t\).
Which row in the table best describes the time to reach maximum height and the speed of the projectile at \(Q\)?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ & \\
\ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{3.2ex}\textbf{A.}\rule[-1.5ex]{0pt}{0pt}\\
\rule{0pt}{3.2ex}\textbf{B.}\rule[-1.5ex]{0pt}{0pt}\\
\rule{0pt}{3.2ex}\textbf{C.}\rule[-1.5ex]{0pt}{0pt}\\
\rule{0pt}{3.2ex}\textbf{D.}\rule[-1.5ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|c|c|}
\hline
\rule{0pt}{2.5ex}\textit{Time to reach}& \textit{Speed of projectile} \\
\ \textit{maximum height}\ \rule[-1ex]{0pt}{0pt}& \textit{at Q} \\
\hline
\rule{0pt}{2.5ex}>\dfrac{t}{2}\rule[-1ex]{0pt}{0pt}&<u\\
\hline
\rule{0pt}{2.5ex}>\dfrac{t}{2}\rule[-1ex]{0pt}{0pt}& =u\\
\hline
\rule{0pt}{2.5ex}=\dfrac{t}{2}\rule[-1ex]{0pt}{0pt}& =u\\
\hline
\rule{0pt}{2.5ex}=\dfrac{t}{2}\rule[-1ex]{0pt}{0pt}& <u \\
\hline
\end{array}
\end{align*}