SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Cartesian Plane, SMB-010

The point  `C(-2,3)`  is the midpoint of the interval `AB`, where `B` has coordinates  `(-1,0).`

What are the coordinates of  `A`?  (3 marks)

Show Answers Only

`(-3,6)`

Show Worked Solution

`text(Using the midpoint formula):`

`(x_A + x_B)/2` `= x_C` `(y_A + y_B)/2` `= y_C`
`(x_A-1)/2` `= -2` `(y_A + 0)/2` `= 3`
`x_A` `= -3` `y_A` `= 6`

 
`:. A\ text(has coordinates)\ (-3,6).`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-10-Mid-point

Cartesian Plane, SMB-009

Given  `C(-3,-5)`  and  `D(-5,1)`, find the midpoint of `CD`.  (2 marks)

Show Answers Only

`(-4, -2)`

Show Worked Solution

`C(-3,-5),\ \ \ D(-5,1)`

`M` `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)`
  `= ( (-3-5)/2, (-5+1)/2)`
  `= (-4, -2)`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-10-Mid-point

Cartesian Plane, SMB-008

Find `M`, the midpoint of `PQ`, given `P(2, -1)`  and  `Q(5, 7)`.  (2 marks)

Show Answers Only

`M(7/2, 3)`

Show Worked Solution

`P(2,-1)\ \ \ Q(5,7)`

`M` `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)`
  `= ( (2+5)/2, (-1+7)/2)`
  `= (7/2, 3)`

Filed Under: Cartesian Plane Tagged With: num-title-ct-pathc, smc-4422-10-Mid-point

Linear Functions, 2UA 2018 HSC 2 MC

The point  `R(9, 5)`  is the midpoint of the interval  `PQ`, where `P` has coordinates  `(5, 3).`
 

What are the coordinates of  `Q`?

  1. `(4, 7)`
  2. `(7, 4)`
  3. `(13, 7)`
  4. `(14, 8)`
Show Answers Only

`C`

Show Worked Solution

`text(Using the midpoint formula):`

`(x_Q + x_P)/2` `= x_R` `(y_Q + y_P)/2` `= y_R`
`(x_Q + 5)/2` `= 9` `(y_Q + 3)/2` `= 5`
`x_Q` `= 13` `y_Q` `= 7`

 
`:. Q\ text(has coordinates)\ (13, 7).`

`=>  C`

Filed Under: 6. Linear Functions, Cartesian Plane Tagged With: Band 2, num-title-ct-pathc, num-title-qs-hsc, smc-4422-10-Mid-point

Linear Functions, 2UA 2008 HSC 2b

Let  `M`  be the midpoint of  `(-1, 4)`  and  `(5, 8)`.

Find the equation of the line through  `M`  with gradient  `-1/2`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x + 2y-14 = 0`

Show Worked Solution

`(-1,4)\ \ \ (5,8)`

`M` `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)`
  `= ( (-1 + 5)/2, (4 + 8)/2)`
  `= (2, 6)`

 

`text(Equation through)\ (2,6)\ text(with)\ m = -1/2`

`y-y_1` `= m (x-x_1)`
`y-6` `= -1/2 (x-2)`
`2y-12` `= -x + 2`
`x + 2y-14` `= 0`

Filed Under: 6. Linear Functions, Cartesian Plane Tagged With: Band 3, num-title-ct-pathc, num-title-qs-hsc, smc-4422-10-Mid-point, smc-4422-30-Point-gradient

Copyright © 2014–2025 SmarterEd.com.au · Log in