The diagram shows triangle `ABC`.
Calculate the area of the triangle, to the nearest square metre. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The diagram shows triangle `ABC`.
Calculate the area of the triangle, to the nearest square metre. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`147\ text{m}^2`
`text{Using the sine rule:}`
| `(CB)/sin60^@` | `=12/sin25^@` | |
| `CB` | `=sin60^@ xx 12/sin25^@` | |
| `=24.590…` |
`angleACB=180-(60+25)=95^@\ \ text{(180° in Δ)}`
`text{Using the sine rule (Area):}`
| `A` | `=1/2 xx AC xx CB xx sin angleACB` | |
| `=1/2 xx 12 xx 24.59 xx sin95^@` | ||
| `=146.98…` | ||
| `=147\ text{m}^2` |
A right-angled triangle `XYZ` is cut out from a semicircle with centre `O`. The length of the diameter `XZ` is 16 cm and `angle YXZ` = 30°, as shown on the diagram.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| a. | `cos 30^@` | `=(XY)/16` |
| `XY` | `= 16 \ cos 30^@` | |
| `= 13.8564` | ||
| `= 13.86 \ text{cm (2 d.p.)}` |
| b. | `text{Area of semi-circle}` | `= 1/2 times pi r^2` |
| `= 1/2 pi times 8^2` | ||
| `= 100.531 \ text{cm}^2` |
| `text{Area of} \ Δ XYZ` | `= 1/2 ab\ sin C` | |
| `= 1/2 xx 16 xx 13.856 xx sin 30^@` | ||
| `= 55.42 \ text{cm}^2` |
| `:. \ text{Shaded Area}` | `= 100.531-55.42` | |
| `= 45.111` | ||
| `= 45.1 \ text{cm}^2 \ \ text{(1 d.p.)}` |
The diagram shows two triangles.
Triangle `ABC` is right-angled, with `AB = 13 text(cm)` and `/_ABC = 62°`.
In triangle `ACD, \ AD = x\ text(cm)` and `/_DAC = 40°`. The area of triangle `ACD` is 30 cm².
What is the value of `x`, correct to one decimal place? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`8.1\ text{cm (1 d.p.)}`
`text(Find)\ AC:`
| `sin62°` | `= (AC)/13` |
| `AC` | `= 13 xx sin62°` |
| `= 11.478…` |
`text(Using the sine rule in)\ DeltaACD :`
| `text(Area)` | `= 1/2 xx AC xx AD xx sin40°` |
| `30` | `= 1/2 xx 11.478… xx x xx sin40°` |
| `:.x` | `= (30 xx 2)/(11.478… xx sin40°)` |
| `= 8.13…` | |
| `= 8.1\ text{cm (1 d.p.)}` |
The area of the triangle shown is 250 cm².
What is the value of `x`, correct to the nearest whole number?
`D`
`text(Using)\ \ \ A = 1/2ab\ sin\ C`
| `250` | `= 1/2 xx 30x\ sin\ 44^@` |
| `250` | `= 15x\ sin\ 44 ^@` |
| `:.x` | `= 250/(15\ sin\ 44^@)` |
| `= 23.99…\ text(m)` |
`=>D`
Find the area of triangle `ABC`, correct to the nearest square metre. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`717\ text(m²)` `text{(nearest m²)}`
| `cos/_C` | `=(AC^2 + CB^2-AB^2)/(2 xx AC xx CB)` |
| `=(50^2 + 40^2-83^2)/(2 xx 50 xx 40)` | |
| `= -0.69725…` | |
| `/_C` | `=134.2067…^@` |
| `text(Using Area) = 1/2 ab\ sinC :` |
| `text(Area)\ Delta ABC` | `=1/2 xx 50 xx 40 xx sin134.2067…^@` |
| `=716.828…` | |
| `=717\ text(m²)\ \ \ \ text{(nearest m²)}` |
What is the area of this triangle, to the nearest square metre?
`C`
`text(Let unknown angle)=/_C`
| `/_C` | `= 180-(50 + 57)\ \ \ \ \ (180^@ \ text(in)\ Delta)` |
| `=73^@` |
| `:. A` | `= 1/2 ab\ sinC` |
| `= 1/2 xx 9.9 xx 8.8 xx sin73^@` | |
| `= 41.656 \ text(m²)` |
`=> C`