Evaluate \(
\begin{aligned}
\int_1^2x^2\, \log_e(x)\ dx. \\
\end{aligned}
\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Evaluate \(
\begin{aligned}
\int_1^2x^2\, \log_e(x)\ dx. \\
\end{aligned}
\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\dfrac{8}{3}\log_e(2)-\dfrac{7}{3} \)
\(u\) | \(= \log_e x,\) | \(\ \ \ \ u^{′}\) | \(= \dfrac{1}{x}\) | |
\(v^{′}\) | \(= x^2,\) | \(v\) | \(= \dfrac{1}{3} x^3\) |
\[\int_1^2 x^2\,\log_e (x) \,dx\] | \[= uv-\int u^{′} v \ dx\] |
\[= \Big{[}\dfrac{x^3}{3}\,\log_e x\Big{]}_1 ^2-\dfrac{1}{3} \int_1 ^2 \dfrac{1}{x} \times x^3\ dx\] | |
\[= \Big{[} \dfrac{8}{3} \log_e 2-0\Big{]}-\dfrac{1}{9} \Big{[}x^3\Big{]}_1^2\] | |
\(=\dfrac{8}{3} \log_e 2-\dfrac{1}{6}(8-1) \) | |
\(=\dfrac{8}{3} \log_e 2-\dfrac{7}{9} \) |
Use integration by parts to evaluate `int_1^e x ln x \ dx`. (3 marks)
`frac{e^2 + 1}{4}`
`u = ln \ x` | `v′ = x` |
`u′ = frac{1}{x}` | `v = frac{x^2}{2}` |
`int _1^e x \ ln \ x \ dx` | `= [ frac{x^2}{2} · ln \ x ]_1^e – int_1^e frac{x^2}{2} · frac{1}{x}\ dx` |
`= [frac{e^2}{2} ln \ e – frac{1}{2} ln 1]- int_1^e frac{x}{2}\ dx` | |
`= frac{e^2}{2} – [ frac{x^2}{4}]_1^e` | |
`= frac{e^2}{2} – ( frac{e^2}{4} – frac{1}{4} )` | |
`= frac{e^2 + 1}{4}` |
Use integration by parts to evaluate `int_1^e x^7 log_e x dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(7e^8 – 1)/(64)`
`u` | `= log_e x,` | `\ \ \ \ u^(′)` | `= (1)/(x)` | |
`v^(′)` | `= x^7,` | `v` | `= (1)/(8) x^8` |
`int_1^e x^7\ log_e x dx` | `= uv-int u^(′) v \ dx` |
`= [(x^8)/(8) ⋅ log_e x]_1 ^e-(1)/(8) int_1 ^e (1)/(x) ⋅ x^8 dx` | |
`= ((e^8)/(8) log_e e-(1)/(8) log_e 1)-(1)/(8)[(1)/(8) x^8]_1 ^e` | |
`= (e^8)/(8)-(1)/(8) ((e^8)/(8)-(1)/(8))` | |
`= (e^8)/(8)-((e^8-1)/(64))` | |
`= (7e^8 +1)/(64)` |
Use integration by parts to find `int x^3 log_e x dx` (3 marks)
`(x^4 log_e x)/(4)-(x^4)/(16) + C`
`u` | `= log_e x,` | `\ \ \ \ u^{′}` | `= (1)/(x)` |
`v^{′}` | `= x^3,` | `v` | `= (x^4)/(4)` |
`int x^3 log_e x dx` | `= uv-int u^{′}v \ dx` |
`= (x^4)/(4) log_e x-int (1)/(x) ⋅ (x^4)/(4) dx` | |
`= (x^4 log_e x)/(4)-(1)/(4) int x^3 dx` | |
`= (x^4 log_e x)/(4)-(x^4)/(16) + C` |
Find `int x ln x\ dx.` (2 marks)
`(x^2 ln x)/2-x^2/4 + c`
`text(Let)\ \ u` | `=lnx` | `v^{′}=` | `x` |
`u^{′}` | `=1/x` | `v=` | `x^2/2` |
`int x ln x\ dx` | `= x^2/2* ln x-int x^2/2 xx 1/x \ dx` |
`= (x^2 ln x)/2-1/2 int x\ dx` | |
`= (x^2 ln x)/2-x^2/4 + c` |
Find `int(ln\ x)/((1 + ln\ x)^2)\ dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x/(1+ln x) +c`
`I=int(ln\ x)/((1 + ln\ x)^2)\ dx`
`text(Let)\ \ \ u=` | `ln x` |
`(du)/(dx)=` | `1/x=1/e^u` |
`du=` | `1/e^u\ dx` |
`dx=` | `e^u\ du` |
`I` | `=int (u e^u)/(1+u)^2\ du` |
`=int ((1+u) e^u)/(1+u)^2\ du- int e^u/(1+u)^2\ du` | |
`=int e^u/(1+u)\ du -int e^u/(1+u)^2\ du` | |
`text{Using integration by parts:}`
`u` | `=-e^u` | `u′` | `=-e^u` |
`v′` | `=-(1+u)^-2` | `v` | `=(1+u)^-1` |
`:.I` | `=int e^u/(1+u)\ du – ((-e^u)/(1+u) + int (e^u)/(1+u)\ du)` |
`=e^u/(1+u) +c` | |
`=x/(1+ln x) +c` |