Matrix \(J\) is a \(2 \times 3\) matrix.
Matrix \(K\) is a \(3 \times 1\) matrix.
Matrix \(L\) is added to the product \(J K\).
The order of matrix \(L\) is
- \(1 \times 3\)
- \(2 \times 1\)
- \(2 \times 3\)
- \(3 \times 2\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Matrix \(J\) is a \(2 \times 3\) matrix.
Matrix \(K\) is a \(3 \times 1\) matrix.
Matrix \(L\) is added to the product \(J K\).
The order of matrix \(L\) is
\(B\)
\(J\ \text{is order}\ 2\times 3\ \text{and}\ K\ \text{is order}\ \3\times 1\)
\(\therefore\ JK\ \text{is order}\ \2\times 1\)
\(\Rightarrow B\)
Matrix \(E\) is a 2 × 2 matrix.
Matrix \(F\) is a 2 × 3 matrix.
Matrix \(G\) is a 3 × 2 matrix.
Matrix \(H\) is a 3 × 3 matrix.
Which one of the following matrix products could have an inverse?
\(D\)
Matrix product requires: [m × n] × [n × m]
Matrix inverse requires a square matrix: [m × n] × [m × n] = [m × m]
Option A: \(EF\) = [2 × 2] × [2 × 3] → [2 × 3] (not square, eliminate A)
Option B: \(FH\) = [2 × 3] × [3 × 3] → [2 × 3] (not square, eliminate B)
Option C: \(GE\) = [3 × 2] × [2 × 2] → [3 × 2] (not square, eliminate B)
Option D: \(GF\) = [3 × 2] × [2 × 3] → [3 × 3] (correct)
Option E: \(HG\) = [3 × 3] × [3 × 2] → [3 × 2] (not square, eliminate E)
\(\Rightarrow D\)
Matrix \(P\) is a permutation matrix and matrix \(Q\) is a column matrix.
\(P=\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\quad \quad Q=\begin{bmatrix}
t \\
e \\
a \\
m \\
s
\end{bmatrix}\)
When \(Q\) is multiplied by \(P\), which three letters change position?
\(B\)
\(P \times Q =\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
t \\
e \\
a \\
m \\
s
\end{bmatrix}
= \begin{bmatrix}
t \\
a \\
m \\
e \\
s
\end{bmatrix}\)
\(\Rightarrow B\)
Matrix `A = [(1, 2), (0, 3), (1, 0), (4, 5)]` and matrix `B = [(2, 0, 3, 1), (4, 5, 2, 0)]`.
Matrix `Q = A xx B`.
The element in row `i` and column `j` of matrix `Q` is `q_(ij)`.
Element `q_41` is determined by the calculation
`E`
`Q = [(1, 2), (0, 3), (1, 0), (4, 5)][(2, 0, 3, 1), (4, 5, 2, 0)]`
`q_41 = 4 xx 2 + 5 xx 4`
`=> E`
Matrix `W` is a `3 xx 2` matrix.
Matrix `Q` is a matrix such that `Q xx W = W`.
Matrix `Q` could be
A. | `\ [1]` | B. | `\ [(1,0),(0,1)]` | C. | `\ [(1,1),(1,1),(1,1)]` |
D. | `\ [(1,0,0),(0,1,0),(0,0,1)]` | E. | `\ [(1,1,1),(1,1,1),(1,1,1)]` |
`D`
`W = (3 xx 2)`
`[(1,0,0),(0,1,0),(0,0,1)][(e_11,e_12),(e_21,e_22),(e_31,e_32)] = [(e_11,e_12),(e_21,e_22),(e_31,e_32)]`
`=>\ D`
The matrix product `[(4,2,0)] xx [(4),(12),(8)]` is equal to
`E`
`[(4,2,0)] xx [(4),(12),(8)]` | `= 2[(2,1,0)] xx 2[(2),(6),(4)]` |
`= 4 xx [(2,1,0)] xx [(2),(6),(4)]` |
`=> E`
The matrix product `[(0,0,0,1,0),(0,0,1,0,0),(1,0,0,0,0),(0,1,0,0,0),(0,0,0,0,1)] xx [(text(L)),(text(E)),(text(A)),(text(P)),(text(S))]` is equal to
A. | `[(text(L)),(text(A)),(text(P)),(text(S)),(text(E))]` | B. | `[(text(L)),(text(E)),(text(A)),(text(P)),(text(S))]` | C. | `[(text(P)),(text(L)),(text(E)),(text(A)),(text(S))]` | D. | `[(text(P)),(text(A)),(text(L)),(text(E)),(text(S))]` | E. | `[(text(P)),(text(E)),(text(A)),(text(L)),(text(S))]` |
`D`
`[(text(P)),(text(A)),(text(L)),(text(E)),(text(S))]`
`=> D`
Which matrix expression results in a matrix that contains the sum of the numbers 2, 5, 4, 1 and 8?
A. `[(1),(1),(1),(1),(1)] xx [(2, 5, 4, 1, 8)]`
B. `[(2, 5, 4, 1, 8)] xx [(1),(1),(1),(1),(1)]`
C. `[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)] xx [(2, 0, 0, 0, 0), (0, 5, 0, 0, 0), (0, 0, 4, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 8)]`
D. `[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)] xx [(2),(5),(4),(1),(8)]`
E. `[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)] + [(2, 0, 0, 0, 0), (0, 5, 0, 0, 0), (0, 0, 4, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 8)]`
`B`
`text(The result needs to be a 1 × 1 matrix.)`
`=> B`
`[(3,4), (1,2)] × [(a),(3)] = [(6,3), (2,-1)] × [(2),(b)]`
Which set of equations below could be used to determine the values of `a` and `b` that are shown in the matrix equation above?
A. `a - b = 2`
`a + b = 0`
B. `a + b = -2`
`a - b = 0`
C. `a + b = 2`
`a - b = 0`
D. `a - b = 8`
`a + b = 2`
E. `a - b = 8`
`a + b = -2`
`B`
`text(Finding the matrix product of both sides:)`
`[(3,4),(1,2)][(a),(3)] = [(6,3),(2,−1)][(2),(b)]`
`3a + 12` | `= 12 + 3b` |
`a – b` | `= 0\ \ …\ (1)` |
`a + 6` | `= 4 – b` |
`a + b` | `=−2\ \ …\ (2)` |
`rArr B`
If `A = [(8,1), (4,2)]` and `B= [(3,12),(6,0)],` then the matrix `AB = [(30,96), (24,48)].`
The element 24 in the matrix `AB` is correctly obtained by calculating
A. `4 × 6 + 2 × 0`
B. `4 × 3 + 2 × 6`
C. `3 × 4 + 12 × 1`
D. `4 × 2 + 8 × 2`
E. `8 × 3 + 1 × 0`
`B`
`[(8,1),(4,2)][(3,12),(6,0)] = [(30,96),(24,48)]`
`e_21\ text(in)\ AB\ text(is calculated.)`
`4 xx 3 + 2 xx 6 = 24`
`rArr B`
`P, Q, R` and `S` are matrices such that the matrix product `P = QRS` is defined.
Matrix `Q` and matrix `S` are square, non-zero matrices for which `Q + S` is not defined.
Which one of the following matrix expressions is defined?
A. `R - S`
B. `Q + R`
C. `P^2`
D. `R^-1`
E. `P × S`
`E`
`text(If)\ Q(n xx n)\ text(and)\ S(m xx m)\ text(are square)`
`text(matrices and)\ Q + S\ text(is not defined,)`
`m != n.`
`text(S)text(ince)\ QRS\ text(is defined, we can deduce)`
`text(that)\ R\ text(is)\ n xx m,\ text(and)\ P\ text(is)\ n xx m.`
`text(Consider)\ E,`
`P xx S\ text(is defined because the number)`
`text(of columns in)\ P(m)\ text(equals the number)`
`text(of rows in)\ S(m).`
`text(All other options can be shown to not)`
`text(be defined.)`
`rArr E`
Matrix `A` has three rows and two columns.
Matrix `B` has four rows and three columns.
Matrix `C = B × A` has
A. two rows and three columns.
B. three rows and two columns.
C. three rows and three columns.
D. four rows and two columns.
E. four rows and three columns.
`D`
`B` | `xx` | `A` | `=` | `C` |
`4 xx 3` | `3 xx 2` | `4 xx 2` |
`rArr D`
Matrix `M` is a `3 xx 4` matrix.
Matrix `P` has five rows.
`N` is another matrix.
If the matrix product
`M (NP) = [(4, 1, 7, 2), (0, 9, 7, 4), (4, 3, 3, 1)],`
then the order of matrix `N` is
A. `3 xx 5`
B. `5 xx 3`
C. `4 xx 5`
D. `5 xx 4`
E. `5 xx 5`
`C`
`M xx (NP) = [(4,1,7,2),(0,9,7,4),(4,3,3,1)]`
`text{The order of matrices (above) is}`
`(3 xx 4) xx ((a xx b)(5 xx c)) = (3 xx 4)`
`a = 4, b = 5, c = 4`
`:. N\ text{is a (4 × 5) matrix.}`
`=> C`
If `A = [(8, 4), (5, 3)]` and the product `AX = [(5, 6), (8, 10)]` then `X` is
A. `[(24, -14), (13, -7.5)]` | B. `[(-4.25, -5.5), (9.75, 12.5)]` |
C. `[(-3.75, 7), (-6.5, 12)]` | D. `[(25, 11), (-19.5, -8.5)]` |
E. `[(0.625, 1.5), (1.6, 3.333)]` |
`B`
`AX` | `= [(5,6),(8,10)]` |
`X` | `= [(8,4),(5,3)]^(−1)[(5,6),(8,10)]` |
`= [(0.75,−1),(−1.25,2)][(5,6),(8,10)]` | |
`= [(−4.25,−5.5),(9.75,12.5)]` |
`=> B`
Matrix `A` is a 3 x 3 matrix. Seven of the elements in matrix `A` are zero.
Matrix `B` contains six elements, none of which are zero.
Assuming the matrix product `AB` is defined, the minimum number of zero elements in the product matrix `AB` is
A. `0`
B. `1`
C. `2`
D. `4`
E. `6`
`C`
`text(Matrix)\ B\ text(is)\ 3 xx 2`
`text(If non-zero elements of matrix)\ A`
`text(are in the same row,)`
`[(a,0,b),(0,0,0),(0,0,0)][(c,d),(e,f),(g,h)] = [(x,y),(0,0),(0,0)]`
`text(where)\ a,b,c …, x, y != 0`
`text(If non-zero elements of matrix)\ B`
`text(are not in the same row,)`
`[(a,0,0),(b,0,0),(0,0,0)][(c,d),(e,f),(g,h)] = [(ac,ad),(bc,bd),(0,0)]`
`:.\ text(Minimum number of zero elements)`
`text(in matrix)\ AB\ text(is 2.)`
`=> C`