SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Matrices, GEN1 2022 VCAA 6 MC

Consider the following system of simultaneous linear equations.

\(y+z=4\)

\(x-y+z=1\)

\(-x+y=2\)

The solution to these simultaneous equations can be found by calculating
 

Show Answers Only

\(E\)

Show Worked Solution

\(
\begin{bmatrix}
0 & 1 & 1 \\ 1 & -1 & 1 \\
-1 & 1 & 0\end{bmatrix}
\times \begin{bmatrix}
x \\ y \\ z\end{bmatrix}
= \begin{bmatrix}
4 \\ 1 \\ 2\end{bmatrix}
\)

\(
\begin{bmatrix}
x \\ y \\ z\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 1 \\
1 & -1 & 1 \\
-1 & 1 & 0
\end{bmatrix}^{-1}
\times \begin{bmatrix}
4 \\ 1 \\ 2
\end{bmatrix}
\)

\(
\begin{bmatrix}
x \\ y \\ z
\end{bmatrix}
= \begin{bmatrix}
1 & -1 & -2 \\
1 & -1 & -1 \\
0 & 1 & 1
\end{bmatrix}
\times\begin{bmatrix}
4 \\ 1 \\ 2\end{bmatrix}
\)

\(\Rightarrow E\)


♦♦ Mean mark 31%.

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-617-20-SE to Matrix

MATRICES, FUR1 2021 VCAA 3 MC

`ax + 4y = 10`

`18x + by = 6`

The set of simultaneous linear equations above does not have a unique solution when

  1. `a = 2, \ b = 36`
  2. `a = 3, \ b = 22`
  3. `a = 4, \ b = 20`
  4. `a = 5, \ b = 12`
  5. `a = 6, \ b = 14`
Show Answers Only

`A`

Show Worked Solution

`text{In matrix form:}`

`[(a,4),(18,b)] [(x),(y)] = [(10),(6)]`
 

`text{No unique solution} =>\ text{det} = 0`

`ab – 4 xx 18` `= 0`
`ab` `= 72`

`=> A`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-20-SE to Matrix, smc-617-30-Determinant

MATRICES, FUR2 2006 VCAA 3

Market researchers claim that the ideal number of bookshops (`x`), sports shoe shops (`y`) and music stores (`z`) for a shopping centre can be determined by solving the equations

`2x + y + z = 12`

`x-y+z=1`

`2y-z=6`

  1. Write the equations in matrix form using the following template.   (1 mark)

     

     
    `qquad[(qquadqquadqquadqquadqquad),(),()][(qquadquad),(qquadquad),(qquadquad)] = [(qquadquad),(qquadquad),(qquadquad)]`
     

     

  2. Do the equations have a unique solution? Provide an explanation to justify your response.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Write down an inverse matrix that can be used to solve these equations.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. Solve the equations and hence write down the estimated ideal number of bookshops, sports shoe shops and music stores for a shopping centre.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  
    `[(2,1,1),(1,-1,1),(0,2,-1)][(x),(y),(z)] = [(12),(1),(6)]`
  2.  `text(Yes. See worked solutions.)`
  3.  
    `[(2,1,1),(1,-1,1),(0,2,-1)]^(-1) = [(-1,3,2),(1,-2,-1),(2,-4,-3)]`
  4. `text(3 bookshops, 4 sports shoe shops, 2 music stores.)`
Show Worked Solution
a.    `[(2,1,1),(1,-1,1),(0,2,-1)][(x),(y),(z)] = [(12),(1),(6)]`
♦ Mean mark 35% for all parts (combined).

 

b.    `text(det)\ [(2,1,1),(1,-1,1),(0,2,-1)] = 1 != 0`

 
`:.\ text(A unique solution exists.)`

 

c.   `text(By CAS,)`

`[(2,1,1),(1,-1,1),(0,2,-1)]^(-1) = [(-1,3,2),(1,-2,-1),(2,-4,-3)]`

 

d.  `[(x),(y),(z)]= [(-1,3,2),(1,-2,-1),(2,-4,-3)][(12),(1),(6)]= [(3),(4),(2)]`

`:.\ text(Estimated ideal numbers are:)`

`text(3 bookshops)`

`text(4 shoe shops)`

`text(2 music stores)`

Filed Under: Simultaneous Equations Tagged With: Band 4, Band 5, Band 6, smc-617-20-SE to Matrix, smc-617-30-Determinant, smc-617-40-Inverse Matrix to solve equation

MATRICES, FUR2 2010 VCAA 3

The basketball coach has written three linear equations which can be used to predict the number of points, `p`, rebounds, `r`, and assists, `a`, that Oscar will have in his next game.

The equations are    `p + r + a` `= 33`
`2p - r + 3a` `= 40`
`p + 2r + a` `= 43`
  1. These equations can be written equivalently in matrix form.
  2. Complete the missing information below.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

 
`[(qquadqquad),(qquadqquad),(qquadqquad)][(p),(r),(a)] = [(33),(40),(43)]`
 

This matrix equation can be solved in the following way.

 
`[(p),(r),(a)] = [(7,-1,-4),(-1,0,1),(x,1,3)][(33),(40),(43)]`
 

  1. Determine the value of `x` shown in the matrix equation above.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. How many rebounds is Oscar predicted to have in his next game?   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  
    `[(1,1,1),(2,-1,3),(1,2,1)][(p),(r),(a)] = [(33),(40),(43)]`
  2. `-5`
  3. `10`
Show Worked Solution
a.    `[(1,1,1),(2,-1,3),(1,2,1)][(p),(r),(a)] = [(33),(40),(43)]`

 

b.    `[(7,-1,-4),(-1,0,1),(x,1,3)]` `=[(1,1,1),(2,-1,3),(1,2,1)]^(-1)`
    `= [(7,-1,-4),(-1,0,1),(-5,1,3)]`

 

`:.x = -5`

 

c.    `[(p),(r),(a)]` `= [(7,-1,-4),(-1,0,1),(-5,1,3)][(33),(40),(43)]`
    `= [(19),(10),(4)]`

 

 

`:.\ text(Oscar is predicted to have 10 rebounds in the next game.)`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-20-SE to Matrix, smc-617-40-Inverse Matrix to solve equation

MATRICES, FUR1 2012 VCAA 3 MC

`x + z` `= 6`
`2y + z` `= 8`
`2x + y + 2z` `= 15`

 
The solution of the simultaneous equations above is given by

MATRICES, FUR1 2012 VCAA 3 MC ab1

MATRICES, FUR1 2012 VCAA 3 MC cd

MATRICES, FUR1 2012 VCAA 3 MC e

Show Answers Only

`A`

Show Worked Solution

`[(1,0,1),(0,2,1),(2,1,2)][(x),(y),(z)] = [(6),(8),(15)]`

♦ Mean mark 41%.
`:. [(x),(y),(z)]` `= [(1,0,1),(0,2,1),(2,1,2)]^(−1)[(6),(8),(15)]`
  `= [(−3,−1,2),(−2,0,1),(4,1,−2)][(6),(8),(15)]`

 
`rArr A`

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-617-20-SE to Matrix, smc-617-40-Inverse Matrix to solve equation

MATRICES, FUR1 2007 VCAA 4 MC

Consider the following system of three simultaneous linear equations.

`2x+z=5`

`x-2y=0`

`y-z=-1`

This system of equations can be written in matrix form as

A.   `[(2, 1), (1, -2), (1, -1)][(x), (y), (z)] = [(5), (0), (-1)]` B.   `[(2,0,1), (1,-2,0), (0,1, -1)][(x), (y), (z)] = [(5), (0), (-1)]`
   
C.   `[(2, 1, 5), (1, -2, 0), (1, -1, -1)][(x), (y), (z)] = [(5), (0), (-1)]` D.   `[(2, 1, 0), (1, -2, 0), (1, -1, 0)][(x), (y), (z)] = [(5), (0), (-1)]`
   
E.   `[(2, 1), (1, -2), (1, -1)][(5), (0), (-1)] = [(x), (y), (z)]`  

 

Show Answers Only

`B`

Show Worked Solution

`=>  B`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-20-SE to Matrix

MATRICES, FUR1 2014 VCAA 2 MC

`y - z` `= 8`
`5x - y` `= 0`
`x + z` `= 4`

  
The system of three simultaneous linear equations above can be written in matrix form as

A. `[[0,1,-1],[0,5,-1],[1,0,1]][[x],[y],[z]]=[[8],[0],[4]]` B. `[[0,1,-1],[5,-1,0],[1,0,1]][[x],[y],[z]]=[[8],[0],[4]]`
       
C. `[[1,-1],[5,-1],[1,1]][[x],[y],[z]]=[[8],[0],[4]]` D. `[[0,5,1],[1,-1,0],[-1,0,1]][[x],[y],[z]]=[[8],[0],[4]]`
       
E. `[[0,5,0],[-1,-1,0],[1,1,0]][[x],[y],[z]]=[[8],[0],[4]]`    
Show Answers Only

`B`

Show Worked Solution

`=>B`

Filed Under: Simultaneous Equations Tagged With: Band 3, smc-617-20-SE to Matrix

Copyright © 2014–2025 SmarterEd.com.au · Log in