`ax + 4y = 10`
`18x + by = 6`
The set of simultaneous linear equations above does not have a unique solution when
- `a = 2, \ b = 36`
- `a = 3, \ b = 22`
- `a = 4, \ b = 20`
- `a = 5, \ b = 12`
- `a = 6, \ b = 14`
Aussie Maths & Science Teachers: Save your time with SmarterEd
`ax + 4y = 10`
`18x + by = 6`
The set of simultaneous linear equations above does not have a unique solution when
`A`
`text{In matrix form:}`
`[(a,4),(18,b)] [(x),(y)] = [(10),(6)]`
`text{No unique solution} =>\ text{det} = 0`
`ab – 4 xx 18` | `= 0` |
`ab` | `= 72` |
`=> A`
Which one of the following matrices has a determinant of zero?
A. | `[(0,1),(1,0)]` | B. | `[(1,0),(0,1)]` | C. | `[(1,2),(−3,6)]` |
D. | `[(3,6),(2,4)]` | E. | `[(4,0),(0,−2)]` |
`D`
`text(By trial and error:)`
`text(Consider option)\ D,`
`text(det)[(3,6),(2,4)]` | `= 3 xx 4 – 6 xx 2` |
`= 0` |
`=> D`
Which one of the following matrix equations has a unique solution?
A. |
`[(1,1),(1,1)][(x),(y)] = [(2),(10)]`
|
B. |
`[(6,−6),(−4,4)][(x),(y)] = [(60),(36)]`
|
C. |
`[(8,−4),(4,2)][(x),(y)] = [(12),(18)]`
|
D. |
`[(7,0),(5,0)][(x),(y)] = [(14),(15)]`
|
E. |
`[(4,−2),(6,−3)][(x),(y)] = [(36),(24)]`
|
`C`
`text(Consider option)\ C:`
`Delta` | `= text(det)[(8,−4),(4,2)]` |
`= 8 xx 2 – (4 xx −4)` | |
`= 32` | |
`!= 0` |
`text(In all other systems,)\ Delta = 0`
`=> C`
The matrix equation below represents a pair of simultaneous linear equations.
`[(12,9),(m,3)][(x),(y)] = [(6),(6)]`
These simultaneous linear equations have no unique solution when `m` is equal to
`E`
`[(x),(y)]` | `= [(12,9),(m,3)]^(−1)[(6),(6)]` |
`= 1/((12 xx 3) – (9 xx m)) [(3,−9),(−m,12)][(6),(6)]` |
`text(No unique solution occurs when)\ \ Δ=0 :`
`(12 xx 3) – (9 xx m)` | `= 0` |
`9m` | `= 36` |
`m` | `= 4` |
`=> E`
Market researchers claim that the ideal number of bookshops (`x`), sports shoe shops (`y`) and music stores (`z`) for a shopping centre can be determined by solving the equations
`2x + y + z = 12`
`x-y+z=1`
`2y-z=6`
`qquad[(qquadqquadqquad),(),()][(quad),(quad),(quad)] = [(quad),(quad),(quad)]`
a. | `[(2,1,1),(1,-1,1),(0,2,-1)][(x),(y),(z)] = [(12),(1),(6)]` |
b. | `text(det)\ [(2,1,1),(1,-1,1),(0,2,-1)] = 1 != 0` |
`:.\ text(A unique solution exists.)`
c. `text(By CAS,)`
`[(2,1,1),(1,-1,1),(0,2,-1)]^(-1) = [(-1,3,2),(1,-2,-1),(2,-4,-3)]`
d. | `[(x),(y),(z)]` | `= [(-1,3,2),(1,-2,-1),(2,-4,-3)][(12),(1),(6)]` |
`= [(3),(4),(2)]` |
`:.\ text(Estimated ideal numbers are:)`
`text(3 bookshops)`
`text(4 shoe shops)`
`text(2 music stores)`
The determinant of `[(3, 2), (6, x)]` is equal to 9.
The value of `x` is
A. `– 7`
B. `– 4.5`
C. `1`
D. `4.5`
E. `7`
`E`
`text(det) [(3, 2), (6, x)]` | `= 3x – 2 xx 6` |
`:. 9` | `= 3x – 12` |
`3x` | `= 21` |
`x` | `= 7` |
`=> E`
`2.8x + 0.7y` | `= 10` |
`1.4x + ky` | `= 6` |
The set of simultaneous linear equations above does not have a solution if `k` equals
A. `– 0.35`
B. `– 0.250`
C. `0`
D. `0.25`
E. `0.35`
`E`
`[(2.8,0.7),(1.4,k)][(x),(y)] = [(10),(6)]`
`text(det) [(2.8,0.7),(1.4,k)] = 2.8k – 0.7 xx 1.4`
`text(No solution if det) = 0,`
`0` | `= 2.8k – 0.98` |
`k` | `= (0.98)/2.8` |
`= 0.35` |
`rArr E`
How many of the following five sets of simultaneous linear equations have a unique solution?
A. 1
B. 2
C. 3
D. 4
E. 5
`C`
`text(Consider each set of equations,)`
`text(Set 1: det)[(4,2),(2,1)] = 0\ \ text{(not unique)}`
`text(Set 2:)\ x = 0, x + y = 6\ \ text{(unique)}`
`text(Set 3: det)[(1,−1),(1,1)] = 2 != 0\ \ text{(unique)}`
`text(Set 4: det)[(2,1),(2,1)] = 0\ \ text{(not unique)}`
`text(Set 5:)\ x = 8, y = 2\ \ text{(unique)}`
`:. 3\ text(sets of equations have a unique solution.)`
`rArr C`
Each of the following four matrix equations represents a system of simultaneous linear equations.
`[(1,3),(0,2)] [(x),(y)]=[(4),(8)]`
`[(1,1),(2,2)] [(x),(y)]=[(5),(3)]`
`[(1,0),(0,2)] [(x),(y)]=[(4),(8)]`
`[(0,3),(0,2)] [(x),(y)]=[(6),(12)]`
How many of these systems of simultaneous linear equations have a unique solution?
A. 0
B. 1
C. 2
D. 3
E. 4
`C`
`text(Consider the 1st system,)`
`Delta = text(det)[(1,3),(0,2)] = 1 xx 2 – 3 xx 0 = 2 != 0`
`:.\ text(Unique solutions exists)`
`text(Similarly for the other systems, we find)`
`text(that)\ Delta != 0\ text{in two (total).}`
`=> C`
Four systems of simultaneous linear equations are shown below.
`12x + 8y` | `= 26` | `3x - 2y` | `= 14` | `−4x - 2y` | `= 17` | `x + 0.5y` | `= 8` |
`3x + 2y` | `= 15` | `−7x + 5y` | `= 9` | `−6x + 3y` | `= 10` | `0.5x + y` | `= 8` |
How many of these systems of simultaneous linear equations do not have a unique solution?
A. 0
B. 1
C. 2
D. 3
E. 4
`B`
`text(Looking at each system in turn,)`
`{:text(det):}[(12,8),(3,2)] = 12 xx 2 – 8 xx 3 = 0`
`{:text(det):}[(3,−2),(−7,5)] = 1 != 0`
`{:text(det):}[(−4,−2),(−6,3)] = −24 != 0`
`{:text(det):}[(1,0.5),(0.5,1)] != 0`
`:. 1\ text(system does not have a unique solution)`
`text{(i.e. det = 0).}`
`=> B`