SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

MATRICES, FUR1 2021 VCAA 3 MC

`ax + 4y = 10`

`18x + by = 6`

The set of simultaneous linear equations above does not have a unique solution when

  1. `a = 2, \ b = 36`
  2. `a = 3, \ b = 22`
  3. `a = 4, \ b = 20`
  4. `a = 5, \ b = 12`
  5. `a = 6, \ b = 14`
Show Answers Only

`A`

Show Worked Solution

`text{In matrix form:}`

`[(a,4),(18,b)] [(x),(y)] = [(10),(6)]`
 

`text{No unique solution} =>\ text{det} = 0`

`ab – 4 xx 18` `= 0`
`ab` `= 72`

`=> A`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-20-SE to Matrix, smc-617-30-Determinant

MATRICES, FUR1 2018 VCAA 1 MC

Which one of the following matrices has a determinant of zero?

A. `[(0,1),(1,0)]` B. `[(1,0),(0,1)]` C. `[(1,2),(−3,6)]`
           
D. `[(3,6),(2,4)]` E. `[(4,0),(0,−2)]`    
Show Answers Only

`D`

Show Worked Solution

`text(By trial and error:)`

`text(Consider option)\ D,`

`text(det)[(3,6),(2,4)]` `= 3 xx 4 – 6 xx 2`
  `= 0`

`=> D`

Filed Under: Simultaneous Equations Tagged With: Band 3, smc-617-30-Determinant

MATRICES, FUR1 2017 VCAA 3 MC

Which one of the following matrix equations has a unique solution?

A.

`[(1,1),(1,1)][(x),(y)] = [(2),(10)]`

 

B.

`[(6,−6),(−4,4)][(x),(y)] = [(60),(36)]`

 

C.

`[(8,−4),(4,2)][(x),(y)] = [(12),(18)]`

 

D.

`[(7,0),(5,0)][(x),(y)] = [(14),(15)]`

 

E.

`[(4,−2),(6,−3)][(x),(y)] = [(36),(24)]`

 

   
Show Answers Only

`C`

Show Worked Solution

`text(Consider option)\ C:`

`Delta` `= text(det)[(8,−4),(4,2)]`
  `= 8 xx 2 – (4 xx −4)`
  `= 32`
  `!= 0`

 

`text(In all other systems,)\ Delta = 0`

`=> C`

Filed Under: Matrix Calculations, Simultaneous Equations Tagged With: Band 4, smc-617-30-Determinant

MATRICES, FUR1 2016 VCAA 3 MC

The matrix equation below represents a pair of simultaneous linear equations.
 

`[(12,9),(m,3)][(x),(y)] = [(6),(6)]`
 

These simultaneous linear equations have no unique solution when `m` is equal to

  1. `−4`
  2. `−3`
  3.     `0`
  4.     `3`
  5.     `4`
Show Answers Only

`E`

Show Worked Solution
`[(x),(y)]` `= [(12,9),(m,3)]^(−1)[(6),(6)]`
  `= 1/((12 xx 3) – (9 xx m)) [(3,−9),(−m,12)][(6),(6)]`

 

`text(No unique solution occurs when)\ \ Δ=0 :`

`(12 xx 3) – (9 xx m)` `= 0`
`9m` `= 36`
`m` `= 4`

`=> E`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-30-Determinant

MATRICES, FUR2 2006 VCAA 3

Market researchers claim that the ideal number of bookshops (`x`), sports shoe shops (`y`) and music stores (`z`) for a shopping centre can be determined by solving the equations

`2x + y + z = 12`

`x-y+z=1`

`2y-z=6`

  1. Write the equations in matrix form using the following template.   (1 mark)

     

     
    `qquad[(qquadqquadqquadqquadqquad),(),()][(qquadquad),(qquadquad),(qquadquad)] = [(qquadquad),(qquadquad),(qquadquad)]`
     

     

  2. Do the equations have a unique solution? Provide an explanation to justify your response.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Write down an inverse matrix that can be used to solve these equations.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. Solve the equations and hence write down the estimated ideal number of bookshops, sports shoe shops and music stores for a shopping centre.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  
    `[(2,1,1),(1,-1,1),(0,2,-1)][(x),(y),(z)] = [(12),(1),(6)]`
  2.  `text(Yes. See worked solutions.)`
  3.  
    `[(2,1,1),(1,-1,1),(0,2,-1)]^(-1) = [(-1,3,2),(1,-2,-1),(2,-4,-3)]`
  4. `text(3 bookshops, 4 sports shoe shops, 2 music stores.)`
Show Worked Solution
a.    `[(2,1,1),(1,-1,1),(0,2,-1)][(x),(y),(z)] = [(12),(1),(6)]`
♦ Mean mark 35% for all parts (combined).

 

b.    `text(det)\ [(2,1,1),(1,-1,1),(0,2,-1)] = 1 != 0`

 
`:.\ text(A unique solution exists.)`

 

c.   `text(By CAS,)`

`[(2,1,1),(1,-1,1),(0,2,-1)]^(-1) = [(-1,3,2),(1,-2,-1),(2,-4,-3)]`

 

d.  `[(x),(y),(z)]= [(-1,3,2),(1,-2,-1),(2,-4,-3)][(12),(1),(6)]= [(3),(4),(2)]`

`:.\ text(Estimated ideal numbers are:)`

`text(3 bookshops)`

`text(4 shoe shops)`

`text(2 music stores)`

Filed Under: Simultaneous Equations Tagged With: Band 4, Band 5, Band 6, smc-617-20-SE to Matrix, smc-617-30-Determinant, smc-617-40-Inverse Matrix to solve equation

MATRICES, FUR1 2008 VCAA 5 MC

The determinant of  `[(3, 2), (6, x)]`  is equal to 9.

The value of `x` is

A.  `– 7`

B.  `– 4.5`

C.      `1`

D.      `4.5`

E.      `7`

Show Answers Only

`E`

Show Worked Solution
`text(det) [(3, 2), (6, x)]` `= 3x – 2 xx 6`
 `:. 9` `= 3x – 12`
 `3x` `= 21`
 `x` `= 7`

`=>   E`

Filed Under: Simultaneous Equations Tagged With: Band 3, smc-617-30-Determinant

MATRICES, FUR1 2013 VCAA 4 MC

`2.8x + 0.7y` `= 10`
`1.4x + ky` `= 6`

 
The set of simultaneous linear equations above does not have a solution if `k` equals

A.   `– 0.35`

B.   `– 0.250`

C.      `0`

D.      `0.25`

E.      `0.35`

Show Answers Only

`E`

Show Worked Solution

`[(2.8,0.7),(1.4,k)][(x),(y)] = [(10),(6)]`

`text(det) [(2.8,0.7),(1.4,k)] = 2.8k – 0.7 xx 1.4`

 

`text(No solution if det) = 0,`

`0` `= 2.8k – 0.98`
`k` `= (0.98)/2.8`
  `= 0.35`

`rArr E`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-30-Determinant

MATRICES, FUR1 2006 VCAA 7 MC

How many of the following five sets of simultaneous linear equations have a unique solution?
 

  MATRICES, FUR1 2006 VCAA 7 MC

A.   1

B.   2

C.   3

D.   4

E.   5

Show Answers Only

`C`

Show Worked Solution

`text(Consider each set of equations,)`

`text(Set 1:  det)[(4,2),(2,1)] = 0\ \ text{(not unique)}`

♦ Mean mark 42%.

`text(Set 2:)\  x = 0, x + y = 6\ \ text{(unique)}`

`text(Set 3:  det)[(1,−1),(1,1)] = 2 != 0\ \ text{(unique)}`

`text(Set 4:  det)[(2,1),(2,1)] = 0\ \ text{(not unique)}`

`text(Set 5:)\  x = 8, y = 2\ \ text{(unique)}`

 

`:. 3\ text(sets of equations have a unique solution.)`

`rArr C`

Filed Under: Simultaneous Equations Tagged With: Band 5, smc-617-30-Determinant

MATRICES, FUR1 2011 VCAA 3 MC

Each of the following four matrix equations represents a system of simultaneous linear equations.

`[(1,3),(0,2)] [(x),(y)]=[(4),(8)]`

`[(1,1),(2,2)] [(x),(y)]=[(5),(3)]`

`[(1,0),(0,2)] [(x),(y)]=[(4),(8)]`

`[(0,3),(0,2)] [(x),(y)]=[(6),(12)]`

 

How many of these systems of simultaneous linear equations have a unique solution?

A.   0

B.   1

C.   2

D.   3

E.   4

Show Answers Only

`C`

Show Worked Solution

`text(Consider the 1st system,)`

`Delta = text(det)[(1,3),(0,2)] = 1 xx 2 – 3 xx 0 = 2 != 0`

`:.\ text(Unique solutions exists)`

 

`text(Similarly for the other systems, we find)`

`text(that)\ Delta != 0\ text{in two (total).}`

`=> C`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-30-Determinant

MATRICES, FUR1 2015 VCAA 3 MC

Four systems of simultaneous linear equations are shown below.
 

`12x + 8y` `= 26` `3x - 2y` `= 14` `−4x - 2y` `= 17` `x + 0.5y` `= 8`
`3x + 2y` `= 15` `−7x + 5y` `= 9` `−6x + 3y` `= 10` `0.5x + y` `= 8`

 
How many of these systems of simultaneous linear equations do not have a unique solution?

A.   0

B.   1

C.   2

D.   3

E.   4

Show Answers Only

`B`

Show Worked Solution

`text(Looking at each system in turn,)`

`{:text(det):}[(12,8),(3,2)] = 12 xx 2 – 8 xx 3 = 0`

`{:text(det):}[(3,−2),(−7,5)] = 1 != 0`

`{:text(det):}[(−4,−2),(−6,3)] = −24 != 0`

`{:text(det):}[(1,0.5),(0.5,1)] != 0`

 

`:. 1\ text(system does not have a unique solution)`

`text{(i.e. det = 0).}`

`=> B`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-30-Determinant

Copyright © 2014–2025 SmarterEd.com.au · Log in