SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Networks, GEN1 2024 NHT 36 MC

Four students, Peggy, Quincy, Radley and Sarah, are grouped together to complete a project. The project is in four parts, labelled \(W, X, Y\) and \(Z\). Each student must complete one part of the project.

The table below shows each student's estimate of the score they will receive if they complete each section.

\begin{array}{|c|c|c|c|c|}
\hline \rule{0pt}{2.5ex}\quad \quad \rule[-1ex]{0pt}{0pt}& \text{Peggy}& \text{Quincy}&\text{Radley}&\text{Sarah} \\
\hline \rule{0pt}{2.5ex}W \rule[-1ex]{0pt}{0pt}& 12 & 19 & 18 & 16 \\
\hline \rule{0pt}{2.5ex}X \rule[-1ex]{0pt}{0pt}& 16 & 15 & 15 & 16 \\
\hline \rule{0pt}{2.5ex}Y \rule[-1ex]{0pt}{0pt}& 10 & 16 & 17 & 15 \\
\hline \rule{0pt}{2.5ex}Z \rule[-1ex]{0pt}{0pt}& 19 & 20 & 18 & 18 \\
\hline
\end{array}

Based on the estimates, which allocation of project parts will maximise the students' group score on the project?


A.  
\begin{array}{|c|c|}
\hline \rule{0pt}{2.5ex}W\rule[-1ex]{0pt}{0pt} & \text { Quincy } \\
\hline \rule{0pt}{2.5ex}X \rule[-1ex]{0pt}{0pt}& \text { Sarah } \\
\hline \rule{0pt}{2.5ex}Y \rule[-1ex]{0pt}{0pt}& \text { Radley } \\
\hline \rule{0pt}{2.5ex}Z \rule[-1ex]{0pt}{0pt}& \text { Peggy } \\
\hline
\end{array}

     B.  
\begin{array}{|c|c|}
\hline \rule{0pt}{2.5ex}W \rule[-1ex]{0pt}{0pt}& \text { Radley } \\
\hline \rule{0pt}{2.5ex}X \rule[-1ex]{0pt}{0pt}& \text { Peggy } \\
\hline \rule{0pt}{2.5ex}Y \rule[-1ex]{0pt}{0pt}& \text { Quincy } \\
\hline \rule{0pt}{2.5ex}Z \rule[-1ex]{0pt}{0pt}& \text { Sarah } \\
\hline
\end{array}

     C.  
\begin{array}{|c|l|}
\hline \rule{0pt}{2.5ex}W \rule[-1ex]{0pt}{0pt}& \text { Sarah } \\
\hline \rule{0pt}{2.5ex}X \rule[-1ex]{0pt}{0pt}& \text { Quincy } \\
\hline \rule{0pt}{2.5ex}Y \rule[-1ex]{0pt}{0pt}& \text { Peggy } \\
\hline \rule{0pt}{2.5ex}Z \rule[-1ex]{0pt}{0pt}& \text { Radley } \\
\hline
\end{array}

D.
\begin{array}{|c|c|}
\hline \rule{0pt}{2.5ex}W \rule[-1ex]{0pt}{0pt}& \text { Radley } \\
\hline \rule{0pt}{2.5ex}X \rule[-1ex]{0pt}{0pt}& \text { Peggy } \\
\hline \rule{0pt}{2.5ex}Y \rule[-1ex]{0pt}{0pt}& \text { Sarah } \\
\hline \rule{0pt}{2.5ex}Z \rule[-1ex]{0pt}{0pt}& \text { Quincy } \\
\hline
\end{array}

     E.
\begin{array}{|l|l|}
\hline \rule{0pt}{2.5ex}W \rule[-1ex]{0pt}{0pt}& \text { Sarah } \\
\hline \rule{0pt}{2.5ex}X \rule[-1ex]{0pt}{0pt}& \text { Peggy } \\
\hline \rule{0pt}{2.5ex}Y \rule[-1ex]{0pt}{0pt}& \text { Radley } \\
\hline \rule{0pt}{2.5ex}Z \rule[-1ex]{0pt}{0pt}& \text { Quincy } \\
\hline
\end{array}
 
Show Answers Only

\(A\)

Show Worked Solution

\(\text{Calculate the score for each option:}\)

\(A: 19+16+17+19=71\)

\(B: 18+16+16+18=68\)

\(C: 16+15+10+18=59\)

\(D: 18+16+15+20=69\)

\(E: 16+16+17+20=69\)

\(\Rightarrow A\)

Filed Under: Matching Problems Tagged With: Band 5, smc-623-20-Other Matching

Networks, GEN1 2022 VCAA 3 MC

An athletics club needs to select one team of four athletes.

The team is required to have one long jump, one high jump, one shot put and one javelin competitor.

The following table shows the best distances, in metres, for each athlete for each event.

\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \ \ \textbf{Athlete}\ \ & \textbf{Long jump} & \textbf{High jump} & \ \  \textbf{Shot put}  \ \ & \quad \textbf{Javelin} \quad \\
\rule[-1ex]{0pt}{0pt}& \textbf{(m)}& \textbf{(m)}& \textbf{(m)}& \textbf{(m)}\\
\hline
\rule{0pt}{2.5ex} \text{Eve} \rule[-1ex]{0pt}{0pt} & \text{4.8} & \text{1.7} & \text{13.1} & \text{40.9} \\
\hline
\rule{0pt}{2.5ex} \text{Harsha} \rule[-1ex]{0pt}{0pt} & \text{4.8} & \text{1.6} & \text{13.9} & \text{39.5} \\
\hline
\rule{0pt}{2.5ex} \text{Shona} \rule[-1ex]{0pt}{0pt} & \text{5.1} & \text{1.8} & \text{14.4} & \text{41.2} \\
\hline
\rule{0pt}{2.5ex} \text{Taylor} \rule[-1ex]{0pt}{0pt} & \text{4.8} & \text{1.7} & \text{12.8} & \text{39.8} \\
\hline
\end{array}

The athletics club will allocate each athlete to one event in order to maximise the total distance that the team jumps and throws.

Which allocation of athlete to event must occur in order to maximise the total distance?
 

Show Answers Only

\(D\)

Show Worked Solution

\(\text{Consider each option:}\)

\(\text{Option A:  Total distance = 59.6 m} \)

\(\text{Option B:  Total distance = 61.6 m} \)

\(\text{Option C:  Total distance = 60.4 m} \)

\(\text{Option D:  Total distance = 61.8 m} \)

\(\text{Option E:  Total distance = 60.8 m} \)

\(\Rightarrow D\)


♦♦ Mean mark 39%.
COMMENT: The Hungarian Algorithm is likely to be a less efficient strategy for many here.

Filed Under: Matching Problems Tagged With: Band 5, smc-623-20-Other Matching

NETWORKS, FUR1 2021 VCAA 2 MC

Five friends ate fruit for morning tea.

The bipartite graph below shows which types of fruit each friend ate.
 

Which one of the following statements is not true?

  1. Only Lee ate pear.
  2. Eric and Kai each ate apple.
  3. Van ate only strawberry.
  4. Quinn and Kai each ate banana.
  5. Orange was the most eaten type of fruit.
Show Answers Only

`C`

Show Worked Solution

`text{Consider option C}`

`text{Van ate strawberry and orange}`

`:.  text{Statement is not true.}`

`=> C`

Filed Under: Matching Problems Tagged With: Band 2, smc-623-20-Other Matching

NETWORKS, FUR2 2020 VCAA 2

A cricket team has 11 players who are each assigned to a batting position.

Three of the new players, Alex, Bo and Cameron, can bat in position 1, 2 or 3.

The table below shows the average scores, in runs, for each player for the batting positions 1, 2 and 3.

 

      Batting position
      1 2 3
     Player          Alex              22                     24                     24          
    Bo 25 25 21
    Cameron    24 25 19

 

Each player will be assigned to one batting position.

To which position should each player be assigned to maximise the team’s score? Write your answer in the table below.   (1 mark)

--- 5 WORK AREA LINES (style=lined) ---

 

       Player           Batting position     
     Alex  
     Bo  
     Cameron  

 

Show Answers Only

`text{Bo (1), Cameron (2), Alex (3)}`

Show Worked Solution

`text(Test different combinations:)`

`text(CBA) = 24 + 25 + 24 = 73`

`text(BCA) = 25 + 25 + 24 = 74`

`text(BAC) = 25 + 24 + 19 = 68`

`:.\ text{Combination for max score: Bo (1), Cameron (2), Alex (3)}`
 

       Player           Batting position     
     Alex 3
     Bo 1
     Cameron 2

Filed Under: Matching Problems Tagged With: Band 4, smc-623-20-Other Matching

NETWORKS, FUR2 2019 VCAA 2

Fencedale High School offers students a choice of four sports, football, tennis, athletics and basketball.

The bipartite graph below illustrates the sports that each student can play.
  
 


  

Each student will be allocated to only one sport.

  1. Complete the table below by allocating the appropriate sport to each student.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

 

         Student                                 Sport                         
    Blake  
    Charli  
    Huan  
    Marco  

 

  1. The school medley relay team consists of four students, Anita, Imani, Jordan and Lola.

      

    The medley relay race is a combination of four different sprinting distances: 100 m, 200 m, 300 m and 400 m, run in that order.

      

    The following table shows the best time, in seconds, for each student for each sprinting distance.
     

      Best time for each sprinting distance (seconds)
         Student             100 m               200 m               300 m               400 m       
      Anita 13.3 29.6 61.8 87.1
      Imani 14.5 29.6 63.5 88.9
      Jordan 13.3 29.3 63.6 89.1
      Lola 15.2 29.2 61.6 87.9

      
     
    The school will allocate each student to one sprinting distance in order to minimise the total time taken to complete the race.

      

    To which distance should each student be allocated?

      

    Write your answers in the table below.  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

     

           Student                                Sprinting distance (m)                         
      Anita  
      Imani  
      Jordan  
      Lola  
Show Answers Only
a.           Student                                 Sport                         
    Blake   Tennis
    Charli   Football
    Huan   Basketball
    Marco   Athletics

 

b.           Student                Sprinting distance (m)         
    Anita 400
    Imani 200
    Jordan 100
    Lola 300
Show Worked Solution

a.    `text(Charli must choose football)`

`=>\ text(Blake must choose tennis)`

`=>\ text(Huan must choose basketball etc…)`
 

         Student                                 Sport                         
    Blake   Tennis
    Charli   Football
    Huan   Basketball
    Marco   Athletics

 

b.    `text(Using the Hungarian Algorithm:)`

`text(After row and column reduction,)`
 

     Student        100 m         200 m         300 m         400 m    
    Anita 0 2.3 2.1 1.1
    Imani 0 1.1 2.6 1.7
    Jordan 0 2 3.9 3.1
    Lola 0 0 0 0

 

`text(Final table values:)`
 

     Student        100 m         200 m         300 m         400 m    
    Anita 0 1.2 1 0
    Imani 0 0 1.5 0.6
    Jordan 0 0.9 2.8 2
    Lola 1.1 0 0 0

 

         Student                Sprinting distance (m)         
    Anita 400
    Imani 200
    Jordan 100
    Lola 300

Filed Under: Matching Problems Tagged With: Band 3, Band 5, smc-623-10-Hungarian Algorithm, smc-623-20-Other Matching

NETWORKS, FUR1 2016 VCAA 1 MC

Lee, Mandy, Nola, Oscar and Pieter are each to be allocated one particular task at work.

The bipartite graph below shows which task(s), 1–5, each person is able to complete.
 

 
Each person completes a different task.

Task 4 must be completed by

  1. `text(Lee.)`
  2. `text(Mandy.)`
  3. `text(Nola.)`
  4. `text(Oscar.)`
  5. `text(Pieter.)`
Show Answers Only

`B`

Show Worked Solution

`=> B`

Filed Under: Matching Problems Tagged With: Band 2, smc-623-20-Other Matching

NETWORKS, FUR1 2012 VCAA 3 MC

The bipartite graph below shows the tasks that each of four people is able to undertake.
 

networks-fur1-2012-vcaa-3-mc
 

All tasks must be allocated and each person can be allocated one task only.

A valid task allocation is

networks-fur1-2012-vcaa-3-mc-ab

networks-fur1-2012-vcaa-3-mc-de

Show Answers Only

`C`

Show Worked Solution

`rArr C`

Filed Under: Matching Problems Tagged With: Band 3, smc-623-20-Other Matching

NETWORKS, FUR2 2006 VCAA 1

George, Harriet, Ian, Josie and Keith are a group of five musicians. 

They are forming a band where each musician will fill one position only. 

The following bipartite graph illustrates the positions that each is able to fill.

 

NETWORKS, FUR2 2006 VCAA 1
 

  1. Which musician must play the guitar?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Complete the table showing the positions that the following musicians must fill in the band.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

       
      NETWORKS, FUR2 2006 VCAA 11

Show Answers Only
  1. `text(George)`
  2.  
    networks-fur2-2006-vcaa-1-answer
Show Worked Solution

a.    `text(Harriet must play the drums, which means that)`

`text(George will play the guitar.)`

 

b.    networks-fur2-2006-vcaa-1-answer

Filed Under: Matching Problems Tagged With: Band 2, Band 3, smc-623-20-Other Matching

NETWORKS, FUR2 2014 VCAA 1

Four members of a train club, Andrew, Brianna, Charlie and Devi, have joined one or more interest groups for electric, steam, diesel or miniature trains.

The edges of the bipartite graph below show the interest groups that these four train club members have joined.

 

NETWORKS, FUR2 2014 VCAA 1
 

  1. How many of these four members have joined the steam trains interest group?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Which interest group have both Brianna and Charlie joined?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2`
  2. `text(Miniature trains)`
Show Worked Solution

a.   `2`

b.   `text(Miniature trains.)`

Filed Under: Matching Problems Tagged With: Band 1, smc-623-20-Other Matching

Copyright © 2014–2025 SmarterEd.com.au · Log in