Let `f: R^+ -> R,\ f(x) = k log_2(x),\ k in R`.
Given that `f^(-1)(1) = 8`, the value of `k` is
- `0`
- `1/3`
- `3`
- `8`
- `12`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f: R^+ -> R,\ f(x) = k log_2(x),\ k in R`.
Given that `f^(-1)(1) = 8`, the value of `k` is
`B`
`y = k log_2(x)`
`text(Inverse: swap)\ x ↔ y`
| `x` | `= k log_2 (y)` |
| `log_2(y)` | `= x/k` |
| `y` | `= 2^(x/k)` |
`text(Given)\ \ f^(-1)(1) = 8,`
| `8` | `= 2^(1/k)` |
| `1/k` | `= 3` |
| `:. k` | `= 1/3` |
`=> B`
The rule for `f` is `f(x) = e^x-e^(-x)`.
Show that the inverse function is given by
`f^(-1)(x) = log_e((x + sqrt(x^2 + 4))/2)` (3 marks)
--- 14 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions.)}`
`y = e^x-e^(-x)`
`text(Inverse: swap)\ x harr y`
| `x` | `= e^y-1/(e^y)` |
| `xe^y` | `= e^(2y)-1` |
| `e^(2y)-xe^y-1` | `= 0` |
`text(Let)\ \ A = e^y`
`:.A^2-xA-1 = 0`
`text(Using the quadratic formula)`
| `A` | `=(x ± sqrt((-x)^2-4 · 1 · (-1)))/(2 · 1)` |
| `=(x ± sqrt(x^2 + 4))/2` |
`text(S)text(ince)\ \ (x-sqrt(x^2 + 4))/2<0\ \ text(and)\ \ e^y>0,`
| `:.e^y` | `= (x + sqrt(x^2 + 4))/2` |
| `log_e e^y` | ` = log_e((x + sqrt(x^2 + 4))/2)` |
| `y` | `= log_e((x + sqrt(x^2 + 4))/2)` |
| `:.f^(-1)(x)` | `= log_e((x + sqrt(x^2 + 4))/2)\ \ …\ text(as required)` |
Let `f : (0, ∞) → R`, where `f(x) = log_e(x)` and `g: R → R`, where `g (x) = x^2 + 1`.
--- 2 WORK AREA LINES (style=lined) ---
ii. State the domain and range of `h`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
| a.i. | `h(x)` | `= f(x^2 + 1)` |
| `= log_e(x^2 + 1)` |
a.ii. `text(Domain)\ (h) =\ text(Domain)\ (g) = R`
| `text(For)\ x ∈ R` | `-> x^2 + 1 >= 1` |
| `-> log_e(x^2 + 1) >= 0` |
`:.\ text(Range)\ (h) = [0,∞)`
| a.iii. | `text(LHS)` | `= h(x) + h(−x)` |
| `= log_e(x^2 _ 1) + log_e((-x)^2 + 1)` | ||
| `= log_e(x^2 + 1) + log_e(x^2 + 1)` | ||
| `= 2log_e(x^2 + 1)` |
| `text(RHS)` | `= f((x^2 + 1)^2)` |
| `= 2log_e(x^2 + 1)` |
`:. h(x) + h(-x) = f((g(x))^2)\ \ text(… as required)`
a.iv. `text(Stationary points when)\ \ h^{prime}(x) = 0`
`text(Using Chain Rule:)`
| `h^{prime}(x)` | `= (2x)/(x^2 + 1)` |
`:.\ text(S.P. when)\ \ x=0`
`text(Find nature using 1st derivative test:)`
`:.\ text{Minimum stationary point at (0, 0)}.`
b.i. `text(Let)\ \ y = k(x)`
`text(Inverse: swap)\ x ↔ y`
| `x` | `= log_e(y^2 + 1)` |
| `e^x` | `= y^2 + 1` |
| `y^2` | `= e^x-1` |
| `y` | `= ±sqrt(e^x-1)` |
`text(But range)\ \ (k^(-1)) =\ text(domain)\ (k)`
`:.k^(-1)(x) =-sqrt(e^x-1)`
b.ii. `text(Range)\ (k^(-1)) =\ text(Domain)\ (k) = (-∞,0]`
`text(Domain)\ (k^(-1)) =\ text(Range)\ (k) = [0,∞)`
The inverse of the function `f: R^+ -> R,\ f(x) = e^(2x + 3)` is
`C`
`text(Let)\ \ y = f(x)`
`text(Inverse: swap)\ \ x harr y`
| `x` | `=e^(2y + 3)` |
| `log_e x` | `=2y+3` |
| `2y` | `=log_e x -3` |
| `y` | `=1/2 log_e (x) – 3/2` |
`:. f^-1 (x) = log_e (sqrt x) – 3/2`
`=> C`
For the function `f: R -> R, f(x) = 3e^(2x)-1,`
--- 7 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. `text(Let)\ \ y = f(x)`
`text(For inverse, swap)\ \ x harr y`
| `x` | `= 3e^(2y)-1` |
| `(x + 1)/3` | `= e^(2y)` |
| `2y` | `= log_e ((x + 1)/3)` |
| `y` | `= 1/2 log_e ((x + 1)/3)` |
`:. f^-1 (x) = 1/2 log_e ((x + 1)/3)`
b. `text(Domain)\ (f^-1) = text(Range)\ f(x),`
`:.x in (-1, oo)`