The probability density function \(f\) of a random variable \(X\) is given by
\(f(x)= \begin{cases}\dfrac{x+1}{20} & 0 \leq x<4 \\ \dfrac{36-5 x}{64} & 4 \leq x \leq 7.2 \\ 0 & \text {elsewhere}\end{cases}\)
The value of \(a\) such that \(\text{Pr}(X \leq a)=\dfrac{5}{8}\) is
- \(\dfrac{4(\sqrt{15}-9)}{5}\)
- \(\sqrt{26}-1\)
- \(\dfrac{36-4 \sqrt{15}}{5}\)
- \(\dfrac{4 \sqrt{15}+9}{5}\)
- \(\dfrac{4 \sqrt{15}+36}{5}\)