A continuous random variable, \(X\), has a probability density function given by

\(f(x)=\begin{cases}\dfrac{2}{9}xe^{-\frac{1}{9}x^2} &\ \ x\geq 0 \\ \\ 0 &\ \ x<0 \\ \end{cases}\)

The expected value of \(X\), correct to three decimal places, is

- 1.000
- 2.659
- 3.730
- 6.341
- 9.000