The triangle \(A B C\) has an exact area of \((12-\sqrt{3})\) cm\(^{2}\).
The exact value of \(x\) is
- \(\dfrac{24-2\sqrt{3}}{3}\)
- \(\dfrac{8\sqrt{3}-2}{3} \)
- \(8\sqrt{3}-1\)
- \(12\sqrt{3}+1\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
The triangle \(A B C\) has an exact area of \((12-\sqrt{3})\) cm\(^{2}\).
The exact value of \(x\) is
\(B\)
| \(12-\sqrt{3}\) | \(=\dfrac{1}{2} \cdot 6 \cdot x \cdot \sin 120^{\circ}\) | |
| \(12-\sqrt{3}\) | \(=3x \cdot \sin 120^{\circ}\) | |
| \(12-\sqrt{3}\) | \(=\dfrac{3\sqrt{3}x}{2}\) | |
| \(x\) | \(=\dfrac{2(12-\sqrt{3})}{3\sqrt{3}} \times \dfrac {\sqrt{3}}{\sqrt{3}}\) | |
| \(=\dfrac{24\sqrt{3}-6}{9} \) | ||
| \(=\dfrac{8\sqrt{3}-2}{3} \) |
\(\Rightarrow B\)
In `Delta KLM, KL` has length 3, `LM` has length 6 and `/_KLM` is 60°. The point `N` is chosen on side `KM` so that `LN` bisects `/_KLM`. The length `LN` is `x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Using sine rule:)`
| `text(Area)\ \ Delta KLM` | `= 1/2 xx 3 xx 6 xx sin 60^@` |
| `= (9 sqrt 3)/2\ \ text(u²)` |
ii. `text(Area)\ \ Delta KLN + text(Area)\ \ Delta NLM = text(Area)\ \ Delta KLM`
`1/2 xx 3 xx x xx sin 30^@ + 1/2 xx x xx 6 xx sin 30^@ = (9 sqrt 3)/2`
| `3/4 x + 3/2 x` | `= (9 sqrt 3)/2` |
| `9/4 x` | `= (9 sqrt 3)/2` |
| `:. x` | `= (9 sqrt 3)/2 xx 4/9` |
| `= 2 sqrt 3` |
The diagram shows `Delta ABC` with sides `AB = 6` cm, `BC = 4` cm and `AC = 8` cm.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Show)\ cos A = 7/8`
`text(Using the cosine rule)`
| `cos A` | `= (b^2 + c^2-a^2)/(2bc)` |
| `= (8^2 + 6^2-4^2)/(2 xx 8 xx 6)` | |
| `= (64 + 36-16)/96` | |
| `= 84/96` | |
| `= 7/8\ \ text(… as required)` |
| ii. | ![]() |
| `a^2 + 7^2` | `= 8^2` |
| `a^2 + 49` | `= 64` |
| `a^2` | `= 15` |
| `a` | `= sqrt 15` |
| `:.\ sin A` | `= (sqrt 15)/8` |
| `:.\ text(Area)\ Delta ABC` | `= 1/2 bc\ sin A` |
| `= 1/2 xx 8 xx 6 xx (sqrt 15)/8` | |
| `= 3 sqrt 15\ \ text(cm²)` |
In the diagram, `ABCD` represents a garden. The sector `BCD` has centre `B` and `/_DBC = (5 pi)/6`
The points `A, B` and `C` lie on a straight line and `AB = AD = 3` metres.
Copy or trace the diagram into your writing booklet.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. | ![]() |
`text(Show)\ /_DAB = (2 pi)/3`
| `/_DBA` | `= pi-(5 pi)/6\ \ \ text{(π radians in straight angle}\ ABC text{)}` |
| `= pi/6\ text(radians)` |
`:. /_BDA = pi/6\ text(radians)\ \ \ text{(base angles of isosceles}\ Delta ADB text{)}`
| `:. /_DAB` | `= pi-(pi/6 + pi/6)\ \ \ text{(angle sum of}\ Delta ADB text{)}` |
| `= (2 pi)/3\ text(radians … as required)` |
ii. `text(Using the cosine rule:)`
| `BD^2` | `= AD^2 + AB^2-2 xx AD xx AB xx cos {:(2 pi)/3` |
| `= 9 + 9-(2 xx 3 xx 3 xx -0.5)` | |
| `= 27` | |
| `:. BD` | `= sqrt 27` |
| `= 3 sqrt 3\ \ text(m)` |
| iii. `text(Area of)\ Delta ADB` | `= 1/2 ab sin C` |
| `= 1/2 xx 3 xx 3 xx sin{:(2 pi)/3` | |
| `= 9/2 xx sqrt3/2` | |
| `= (9 sqrt 3)/4\ \ text(m²)` |
`text(Area of sector)\ BCD`
`= {(5 pi)/6}/(2 pi) xx pi r^2`
`= (5 pi)/12 xx (3 sqrt 3)^2`
`= (45 pi)/4\ \ text(m²)`
`:.\ text(Area of garden)\ ABCD`
`= (9 sqrt 3)/4 + (45 pi)/4`
`= (9 sqrt 3 + 45 pi)/4\ \ text(m²)`
The lengths of the sides of a triangle are 7 cm, 8 cm and 13 cm.
--- 5 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i.
`∠ABC\ \ text(is opposite the longest side)`
`text(Using the cosine rule)`
| `cos\ ∠ABC` | `= (7^2 + 8^2 −13^2)/(2 xx 7 xx 8)` |
| `= text(−)1/2` |
`text(S)text(ince cos)\ 60^@ = 1/2\ text(and cos is negative)`
`text(in 2nd quadrant,)`
| `∠ABC` | `= 180− 60` |
| `= 120^@` |
ii. `text(Using the sine rule)`
| `text(Area)\ ΔABC` | `= 1/2\ ab\ sin\ C` |
| `= 1/2 xx 7 xx 8\ sin 120^@` | |
| `= 28 xx sqrt3/2` | |
| `= 14sqrt3\ text(cm)^2` |
The diagram shows a circle with centre `O` and radius 2 centimetres. The points `A` and `B` lie on the circumference of the circle and `/_AOB = theta`.
Find the other value. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
(1) Find the area of sector `AOB` (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
(2) Find the exact length of the perimeter of the minor segment bounded by the chord `AB` and the arc `AB`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
| i. | `text(Area)\ Delta AOB` | `= 1/2 ab sin theta` |
| `= 1/2 xx 2 xx 2 xx sin theta` | ||
| `= 2 sin theta` |
| `2 sin theta` | `= sqrt 3\ \ \ text{(given)}` |
| `sin theta` | `= sqrt3/2` |
| `:. theta` | `= pi/3,\ pi-pi/3` |
| `= pi/3,\ (2pi)/3` |
`:.\ text(The other value of)\ theta\ text(is)\ \ (2pi)/3\ \ text(radians)`
| ii.(1) | `text(Area of sector)\ AOB` | `= pi r^2 xx theta/(2pi)` |
| `= 1/2 r^2 theta` | ||
| `= 1/2 xx 2^2 xx pi/3` | ||
| `= (2pi)/3\ text(cm²)` |
| ii.(2) | `text(Using the cosine rule:)` |
| `AB^2` | `= OA^2 + OB^2-2 xx OA xx OB xx cos theta` |
| `= 2^2 + 2^2-2 xx 2 xx 2 xx cos (pi/3)` | |
| `= 4 + 4-4` | |
| `= 4` | |
| `:.\ AB` | `= 2` |
| `text(Arc)\ AB` | `= 2 pi r xx theta/(2pi)` |
| `= r theta` | |
| `= (2pi)/3\ text(cm)` |
`:.\ text(Perimeter) = (2 + (2pi)/3)\ text(cm)`