SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Trigonometry, 2ADV T1 2021 HSC 18

The diagram shows a triangle `ABC` where `AC` = 25 cm, `BC` = 16 cm, `angle BAC` = 28° and angle `ABC` is obtuse.
 


 

Find the size of the obtuse angle `ABC` correct to the nearest degree.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`133°`

Show Worked Solution

`text(Using the sine rule:)`

`sin theta/25` `= (sin 28°)/16`
`sin theta` `= (25 xx sin 28°)/16`
`sin theta` `= 0.73355`
`theta` `= 47°`
 
`:. angleABC= 180-47= 133°`

Filed Under: Trig Ratios, Sine and Cosine Rules, Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: 2adv-std2-common, Band 4, common-content, smc-6392-30-Sine Rule, smc-6392-60-Ambiguous Case, smc-980-30-Sine Rule, smc-980-50-Ambiguous Case

Trigonometry, 2ADV T1 EQ-Bank 2

Determine all possible dimensions for triangle `ABC` given  `AB = 6.2\ text(cm)`, `angleABC = 35°`  and  `AC = 4.1`.

Give all dimensions correct to one decimal place.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(7.1 cm, 6.2 cm, 4.1 cm or)`

`text(3.0 cm, 6.2 cm, 4.1 cm.)`

Show Worked Solution

`text(Using the sine rule:)`

`(sinangleACB)/6.2` `= (sin35^@)/4.1`
`sinangleACB` `= (6.2 xx sin35^@)/4.1`
  `= 0.8673…`
`angleACB` `= 60.15…^@\ text(or)\ 119.84…^@`

  
`text(If)\ \ angleACB = 60.15^@,`

`angleBAC = 180-(35 + 60.15) = 84.85^@`
 

`(BC)/(sin84.85)` `= 4.1/(sin35^@)`
`BC` `= 7.11… = 7.1\ text(cm)`

 
`text(If)\ \ angleACB = 119.85^@,`

`angleBAC = 180-(35 + 119.85) = 25.15^@`
 

`(BC)/(sin25.15)` `= 4.1/(sin35^@)`
`BC` `= 3.03… = 3.0\ text(cm)`

 
`:.\ text(Possible dimensions are:)`

`text(7.1 cm, 6.2 cm, 4.1 cm or)`

`text(3.0 cm, 6.2 cm, 4.1 cm.)`

Filed Under: Trig Ratios, Sine and Cosine Rules, Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 4, smc-6392-30-Sine Rule, smc-6392-60-Ambiguous Case, smc-980-30-Sine Rule, smc-980-50-Ambiguous Case

Trigonometry, 2ADV T1 2009 HSC 5c

The diagram shows a circle with centre `O` and radius 2 centimetres. The points `A` and `B` lie on the circumference of the circle and  `/_AOB = theta`.
 

2009 5c  

  1. There are two possible values of `theta` for which the area of `Delta AOB` is `sqrt 3` square centimetres. One value is `pi/3`.

     

    Find the other value.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Suppose that  `theta = pi/3`.

     

    (1) Find the area of sector `AOB`   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

     

    (2) Find the exact length of the perimeter of the minor segment bounded by the chord `AB` and the arc `AB`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(2pi)/3`
  2. (1)  `(2pi)/3\ \ text(cm²)`
  3. (2)  `(2 + (2pi)/3)\ text(cm)`
Show Worked Solution
i.    `text(Area)\ Delta AOB` `= 1/2 ab sin theta`
    `= 1/2 xx 2 xx 2 xx sin theta`
    `= 2 sin theta`
`2 sin theta` `= sqrt 3\ \ \ text{(given)}`
`sin theta` `= sqrt3/2`
`:. theta` `= pi/3,\ pi-pi/3`
  `= pi/3,\ (2pi)/3`

 

`:.\ text(The other value of)\ theta\ text(is)\ \ (2pi)/3\ \ text(radians)` 

 

ii.(1) `text(Area of sector)\ AOB` `= pi r^2 xx theta/(2pi)`
    `= 1/2 r^2 theta`
    `= 1/2 xx 2^2 xx pi/3`
    `= (2pi)/3\ text(cm²)` 

 

ii.(2) `text(Using the cosine rule:)`
`AB^2` `= OA^2 + OB^2-2 xx OA xx OB xx cos theta`
  `= 2^2 + 2^2-2 xx 2 xx 2 xx cos (pi/3)`
  `= 4 + 4-4`
  `= 4`
`:.\ AB` `= 2`

 

`text(Arc)\ AB` `= 2 pi r xx theta/(2pi)`
  `= r theta`
  `= (2pi)/3\ text(cm)`

 

`:.\ text(Perimeter) = (2 + (2pi)/3)\ text(cm)`

Filed Under: Circular Measure, Circular Measure, Circular Measure (Y11), Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules, Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 4, Band 5, smc-6392-35-Sine Rule (Area), smc-6392-60-Ambiguous Case, smc-6394-10-Arc Length/Perimeter, smc-6394-20-Area of Sector, smc-978-10-Arc Length/Perimeter, smc-978-20-Area of Sector, smc-980-30-Sine Rule, smc-980-50-Ambiguous Case

Copyright © 2014–2026 SmarterEd.com.au · Log in