The equation \(\cos \, p x=\dfrac{1}{2}\) has 2 solutions where \(0 \leq x \leq 2 \pi\) and \(p>0\).
Find all possible values of \(p\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The equation \(\cos \, p x=\dfrac{1}{2}\) has 2 solutions where \(0 \leq x \leq 2 \pi\) and \(p>0\).
Find all possible values of \(p\). (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
\(\dfrac{5}{6} \leqslant p<\dfrac{7}{6}\)
\(\cos (p x)=\dfrac{1}{2}\ \ \Rightarrow\ \ px=\cos ^{-1}\left(\dfrac{1}{2}\right)=\dfrac{\pi}{3}, \dfrac{5 \pi}{3}, \dfrac{7 \pi}{3}\)
\(\text{Since there are 2 solutions in range} \ \ 0 \leq x<2 \pi:\)
\(p x=\dfrac{5 \pi}{3} \ \Rightarrow \ x=\dfrac{5 \pi}{3 p}\)
| \(\dfrac{5 \pi}{3 p}\) | \(\leqslant 2 \pi\) | |
| \(3 p\) | \(\geqslant \dfrac{5}{2}\) | |
| \(p\) | \(\geqslant \dfrac{5}{6}\) |
\(\text{Since}\ \ p x=\dfrac{7 \pi}{3} \ \ \text{cannot be a solution in the range} \ \ 0 \leq x \leq 2 \pi:\)
\(p x=\dfrac{7 \pi}{3} \ \Rightarrow \ x=\dfrac{7 \pi}{3 p}\)
| \(\dfrac{7 \pi}{3 p}\) | \(>2 \pi\) | |
| \(p\) | \(<\dfrac{7}{6}\) |
\(\therefore \dfrac{5}{6} \leqslant p<\dfrac{7}{6}\)
Determine the number of values of \(\theta\) in the range \(0^{\circ} \leqslant \theta \leqslant 360^{\circ}\) that satisfy the equation
\((\tan \theta-\sqrt{3})(\cos^{2}\theta-1)=0 \)
\(C\)
\(\tan \theta = \sqrt{3}\ \rightarrow \text{2 solutions} \)
| \(\cos^{2}\theta\) | \(=1\) | |
| \(\cos\theta\) | \(= \pm 1\) | |
| \(\theta\) | \(=0^{\circ}, 180^{\circ}, 360^{\circ}\ \rightarrow \text{3 solutions} \) |
\(\Rightarrow C\)
Solve `2cos(2x) = −sqrt3` for `x`, where `0 <= x <= pi`. (2 marks)
`x = (5pi)/12, (7pi)/12`
| `cos(2x)` | `= – sqrt3/2` |
| `2x` | `= (5pi)/6, 2pi – (5pi)/6, 2pi+(5pi)/6` |
| `=(5pi)/6, (7pi)/6, (17pi)/6,\ …` | |
| `:. x` | `=(5pi)/12, (7pi)/12\ \ \ (0 <= x <= pi)` |
Solve the equation `cos((3x)/2) = 1/2` for `−pi/2<=x<=pi/2`. (2 marks)
`x = ± (2pi)/9`
`cos((3x)/2) = 1/2`
`=>\ text(Base angle)\ =pi/3`
| `(3x)/2` | `= (-pi)/3, pi/3, (5pi)/3, …` |
| `:. x` | `=(-2pi)/9, (2pi)/9, (10pi)/9` |
| `= (-2pi)/9, (2pi)/9\ \ \ (-pi/2<=x<=pi/2)` |
Solve `cos\ theta =1/sqrt2` for `0 ≤ theta ≤ 2pi`. (2 marks)
`pi/4, (7pi)/4`
`cos\ theta = 1/sqrt2,\ \ \ 0 ≤ theta ≤ 2pi`
`text(S)text(ince)\ cos\ pi/4 = 1/sqrt2,\ \ text(and cos)`
`text(is positive in 1st/4th quadrants)`
| `theta` | `= pi/4, 2pi-pi/4` |
| `= pi/4, (7pi)/4` |
Find the exact value of `theta` such that `2 cos theta = 1`, where `0 <= theta <= pi/2`. (2 marks)
`theta = pi/3\ text(radians)`
| `2 cos theta` | `= 1` |
| `cos theta` | `= 1/2` |
| `:.\ theta` | `= pi/3,\ \ \ \ 0 <= theta <= pi/2` |