Let `h:[-3/2, oo) -> R,\ h(x) = sqrt(2x + 3) - 2.`
Find the value(s) of `x` such that `[h(x)]^2 = 1`. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `h:[-3/2, oo) -> R,\ h(x) = sqrt(2x + 3) - 2.`
Find the value(s) of `x` such that `[h(x)]^2 = 1`. (2 marks)
`3 or\ text(−1)`
`[h(x)]^2 = 1` | `\ => \ h(x) = +- 1` | |||
`sqrt(2x + 3)` | `= 1` | `sqrt(2x + 3) – 2` | `= -1` | |
`sqrt(2x + 3)` | `= 3` | `sqrt(2x + 3)` | `= 1` | |
`2x + 3` | `= 9` | `2x + 3` | `= 1` | |
`x` | `= 3` | `x` | `= -1` |
`:. x = 3 or -1\ \ \ text{(both in the domain of}\ h)`
Let `f : (0, ∞) → R`, where `f(x) = log_e(x)` and `g: R → R`, where `g (x) = x^2 + 1`.
a.i. | `h(x)` | `= f(x^2 + 1)` |
`= log_e(x^2 + 1)` |
a.ii. `text(Domain)\ (h) =\ text(Domain)\ (g) = R`
`text(For)\ x ∈ R` | `-> x^2 + 1 >= 1` |
`-> log_e(x^2 + 1) >= 0` |
`:.\ text(Range)\ (h) = [0,∞)`
a.iii. | `text(LHS)` | `= h(x) + h(−x)` |
`= log_e(x^2 _ 1) + log_e((−x)^2 + 1)` | ||
`= log_e(x^2 + 1) + log_e(x^2 + 1)` | ||
`= 2log_e(x^2 + 1)` |
`text(RHS)` | `= f((x^2 + 1)^2)` |
`= 2log_e(x^2 + 1)` |
`:. h(x) + h(−x) = f((g(x))^2)\ \ text(… as required)`
a.iv. `text(Stationary points when)\ \ h′(x) = 0`
`text(Using Chain Rule:)`
`h′(x)` | `= (2x)/(x^2 + 1)` |
`:.\ text(S.P. when)\ \ x=0`
`text(Find nature using 1st derivative test:)`
`:.\ text{Minimum stationary point at (0, 0)}.`
b.i. `text(Let)\ \ y = k(x)`
`text(Inverse: swap)\ x ↔ y`
`x` | `= log_e(y^2 + 1)` |
`e^x` | `= y^2 + 1` |
`y^2` | `= e^x – 1` |
`y` | `= ±sqrt(e^x – 1)` |
`text(But range)\ \ (k^(−1)) =\ text(domain)\ (k)`
`:.k^(−1)(x) = −sqrt(e^x – 1)`
b.ii. `text(Range)\ (k^(−1)) =\ text(Domain)\ (k) = (−∞,0]`
`text(Domain)\ (k^(−1)) =\ text(Range)\ (k) = [0,∞)`