SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Measurement, STD2 EQ-Bank 23

Bangkok is located at \( (14^{\circ}\text{N}, 100^{\circ}\text{E}) \) and Montreal is located at \( (46^{\circ}\text{N}, 74^{\circ}\text{W}) \).

  1. Identify which city is closer to the Equator, giving reasons.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. What is the difference in latitude between Bangkok and Montreal?   (1 mark)

    --- 3 WORK AREA LINES (style=blank) ---

  3. What is the difference in longitude between Bangkok and Montreal?   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\text{Bangkok}\)

b.   \(32^{\circ}\)

c.   \(174^{\circ}\)

Show Worked Solution

a.   \(\text{Bangkok is at latitude }14^{\circ}\text{N} \)

\(\text{Montreal is at latitude }46^{\circ}\text{N} \)

\(\text{Since 14° < 46°, Bangkok is closer to the Equator.}\)
 

b.    \(\text{Latitude of Bangkok}=14^{\circ}\text{N}\)

\(\text{Latitude of Montreal}=46^{\circ}\text{N}\)

\(\text{Since cities are both in the northern hemisphere, subtract the latitudes.}\)

\(\text{Difference in latitude}=46^{\circ}-14^{\circ}=32^{\circ} \)
 

c.    \(\text{Longitude of Bangkok}=100^{\circ}\text{E}\)

\(\text{Longitude of Montreal}=74^{\circ}\text{W}\)

\(\text{Since cities on opposite sides of the Prime Meridian, add the longitudes.}\)

\(\text{Difference in longitude}=100^{\circ}+74^{\circ}=174^{\circ} \)

Filed Under: Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 3, Band 4, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates

Measurement, STD2 EQ-Bank 22

Tokyo is located at \( (36^{\circ}\text{N}, 140^{\circ}\text{E}) \) and Lima is located at \( (12^{\circ}\text{S}, 77^{\circ}\text{W}) \).

  1. Explain which city is closer to the Prime Meridian?   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. What is the difference in latitude between Tokyo and Lima?   (1 mark)

    --- 3 WORK AREA LINES (style=blank) ---

  3. What is the difference in longitude between Tokyo and Lima?   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\text{Lima}\)

b.   \(48^{\circ}\)

c.   \(217^{\circ}\)

Show Worked Solution

a.   \(\text{Tokyo is at longitude }140^{\circ}\text{E} \)

\(\text{Lima is at longitude }77^{\circ}\text{W} \)

\(\text{Since 77° < 140°, Lima is closer to the Prime Meridian.}\)
 

b.    \(\text{Latitude of Tokyo}=36^{\circ}\text{N}\)

\(\text{Latitude of Lima}=12^{\circ}\text{S}\)

\(\text{Since cities on opposite sides of the equator, add the latitudes.}\)

\(\text{Difference in latitude}=36^{\circ}+12^{\circ}=48^{\circ} \)
 

c.    \(\text{Longitude of Tokyo}=140^{\circ}\text{E}\)

\(\text{Longitude of Lima}=77^{\circ}\text{W}\)

\(\text{Since cities on opposite sides of the Prime Meridian, add the longitudes.}\)

\(\text{Difference in longitude}=140^{\circ}+77^{\circ}=217^{\circ} \)

Filed Under: Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 3, Band 4, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates

Measurement, STD2 EQ-Bank 7 MC

The coordinates of Cairo are \( (30^{\circ}\text{N}, 31^{\circ}\text{E}) \).

What are the coordinates of Athens if it is 23° west of Cairo and on the same line of longitude?

  1. \( (30^{\circ}\text{N}, 54^{\circ}\text{E}) \)
  2. \( (7^{\circ}\text{N}, 31^{\circ}\text{E}) \)
  3. \( (53^{\circ}\text{N}, 31^{\circ}\text{E}) \)
  4. \( (30^{\circ}\text{N}, 8^{\circ}\text{E}) \)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Athens is 23° west of Cairo.}\)

\(\text{Latitude of Athens}=30^{\circ}\text{N}\)

\(\text{Longitude of Athens}=31^{\circ}-23^{\circ}=8^{\circ}\text{E}\)

\(\therefore\ \text{Coordinates of Athens are:}\ (30^{\circ}\text{N}, 8^{\circ}\text{E})\)

\(\Rightarrow D\)

Filed Under: Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 3, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates

Measurement, STD2 EQ-Bank 5 MC

The coordinates of Jakarta are \( (6^{\circ}\text{S}, 107^{\circ}\text{E}) \).

Darwin and Jakarta share the same longitude but Darwin is \( 18^{\circ} \) south of Jakarta. What are the coordinates of Darwin?

  1. \( (6^{\circ}\text{S}, 125^{\circ}\text{E}) \)
  2. \( (6^{\circ}\text{S}, 89^{\circ}\text{E}) \)
  3. \( (24^{\circ}\text{S}, 107^{\circ}\text{E}) \)
  4. \( (12^{\circ}\text{N}, 107^{\circ}\text{E}) \)
Show Answers Only

\(C\)

Show Worked Solution

\(\text{Darwin is }18^{\circ}\text{ south of Jakarta.}\)

\(\text{Latitude of Darwin}=6^{\circ}+18^{\circ}=24^{\circ}\text{S}\)

\(\text{Longitude of Darwin}=107^{\circ}\text{E}\)

\(\therefore\ \text{Coordinates of Darwin are:}\ (24^{\circ}\text{S}, 107^{\circ}\text{E})\)

\(\Rightarrow C\)

Filed Under: Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 3, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates

Measurement, STD2 EQ-Bank 8 MC

City P is at latitude \( 42^{\circ}\text{N} \) and longitude \( 88^{\circ}\text{W} \). City Q is \( 56^{\circ} \) south of City P and \( 47^{\circ} \) west of City P.

What are the latitude and longitude of City Q?

  1. \( 14^{\circ}\text{N} \), \( 41^{\circ}\text{W} \)
  2. \( 14^{\circ}\text{S} \), \( 135^{\circ}\text{W} \)
  3. \( 14^{\circ}\text{S} \), \( 41^{\circ}\text{W} \)
  4. \( 98^{\circ}\text{N} \), \( 135^{\circ}\text{W} \)
Show Answers Only

\(B\)

Show Worked Solution

\(\text{Latitude of City Q}=56^{\circ}-42^{\circ}=14^{\circ}\text{S}\)

\(\text{Longitude of City Q}=88^{\circ}+47^{\circ}=135^{\circ}\text{W}\)

\(\Rightarrow B\)

Filed Under: Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 4, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates

Measurement, STD2 EQ-Bank 13 MC

City A is at latitude \( 27^{\circ}\text{S} \) and longitude \( 153^{\circ}\text{E} \). City B is \( 45^{\circ} \) north of City A and \( 38^{\circ} \) east of City A.

What are the latitude and longitude of City B?

  1. \( 18^{\circ}\text{N} \), \( 191^{\circ}\text{E} \)
  2. \( 18^{\circ}\text{N} \), \( 115^{\circ}\text{E} \)
  3. \( 72^{\circ}\text{S} \), \( 191^{\circ}\text{E} \)
  4. \( 18^{\circ}\text{N} \), \( 169^{\circ}\text{W} \)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Latitude of City B}=45^{\circ}-27^{\circ}=18^{\circ}\text{N}\)

\(\text{Longitude of City B}=153^{\circ}+38^{\circ}=191^{\circ}\text{E}\)

\(\text{Since longitude}\ \gt 180^{\circ},\ \text{convert to Western hemisphere:\)

\(191^{\circ}-180^{\circ}=11^{\circ}\)

\(\text{Longitude}\ = 180-11=169^{\circ}\text{W}\)

\(\Rightarrow D\)

Filed Under: Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 5, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates

Measurement, STD2 M2 2023 HSC 7 MC

City `A` is at latitude 34°S and longitude 151°E. City `B` is 72° north of City `A` and 25° west of City `A`.

What are the latitude and longitude of City `B`?

  1. 16°N, 126°E
  2. 16°N, 176°E
  3. 38°N, 126°E
  4. 38°N, 176°E
Show Answers Only

`C`

Show Worked Solution

`text{Latitude of city}\ A: \ -34+72=38°text{N}`

`text{Longitude of city}\ A: \ 151-25=126°text{E}`

`=>C`

Filed Under: M2 Working with Time (Y11), Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 4, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates, smc-776-30-Earth Coordinates

Measurement, STD2 M2 2011 HSC 27b

Pontianak has a longitude of 109°E, and Jarvis Island has a longitude of 160°W.

Both places lie on the Equator. 

  1. Calculate the shortest distance between these two places (`d`), to the nearest kilometre, using

     

      `d=theta/360 xx  2pir`  where  `theta=91°`  and  `r=6400\ \text{km}`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. The position of Rabaul is 4° to the south and 48° to the west of Jarvis Island. What is the latitude and longitude of Rabaul?    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `10\ 165\ text(km)\ \ \ text{(nearest km)}`
  2. `(4^@text{S}, 152^@text{E})`
Show Worked Solution
a.  `text(Shortest distance)` `= 91/360 xx 2 pi r`
  `= 91/360 xx 2 xx pi xx 6400`
  `= 10\ 164.79…`
  `=10\ 165\ text(km)\ text{(nearest km)}`

 

♦♦ Mean mark (b) 33%

b.    `text(Latitude:)`

`4^@\ text(South of Jarvis Island)`

`text{Since Jarvis Island is on equator, Rabaul’s latitude is 4°S.}`
 

`text(Longitude:)`

`text(Jarvis Island is)\ 160^@ text(W)`

`text(Rubail is)\ 48^@\ text(West of Jarvis Island, or 208° West)`

`text(which is)\ 28^@\ text{past meridian (180°)}`

`text(Longitude)= (180-28)^@ text(E)= 152^@ text(E)`

`:.\ text(Rabaul’s position is)\ (4^@text{S}, 152^@text{E})`

Filed Under: M2 Working with Time (Y11), Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 4, Band 5, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates, smc-776-30-Earth Coordinates

Measurement, STD2 M2 2017 HSC 27d

Island A and island B are both on the equator. Island B is west of island A. The longitude of island A is 5°E and the angle at the centre of Earth (O), between A and B, is 30°.
 

  1. What is the latitude and longitude of island `B`?  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. What time is it on island `B` when it is 10 am on island `A`?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   `(0°, 25W)`

b.   `8\ text(am)`

Show Worked Solution

a.    `text{Longitude (island}\ B)= 5-30= -25= 25^@\ text(W)`

`text{Latitude (island}\ B)=0^@`

`:.\ text(Island)\ B\ text{is  (0°, 25°W).}`
 

b.    `text(Time difference) = 30 xx 4 = 120 \ text(mins)\ =2\ text(hours)`

`text(S)text(ince)\ B\ text(is west of)\ A:`

`text(Time on island)\ B= 10\ text(am less 2 hours)= 8\ text(am)`

♦ Mean marks (a) 40% and (b) 45%.

Filed Under: M2 Working with Time (Y11), Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 5, smc-6305-10-Longitude and Time Differences, smc-6305-20-Earth Coordinates, smc-6524-10-Longitude and Time Differences, smc-6524-20-Earth Coordinates, smc-776-20-Longitude and Time Differences, smc-776-30-Earth Coordinates

Measurement, STD2 M2 2010 HSC 15 MC

In this diagram of the Earth, `O` represents the centre and `B` lies on both the Equator and the Greenwich Meridan.
 

What is the latitude and longitude of point `A`?

  1.    `\text{30°N  110°E}`
  2.   `\text{30°N  110°W}`
  3.   `\text{60°N  110°E}`
  4.   `\text{60°N  110°W}`
Show Answers Only

`A`

Show Worked Solution

 `text{Since}\ A\ \text{is 30° North of the Equator}`

   `=> text{Latitude}\ =30^circ \text{N}`

  `text{Since}\ A\ \text{is 110° East of Greenwich}`

   `=>text{Longitude}\ =110^circ \text{E}`
 

`:. \ \text{Coordinates of}\ A\ \text{= (30°N, 110°E)}`

`=>  A`

Filed Under: M2 Working with Time (Y11), Positions on the Earth's Surface, Positions on the Earth's Surface Tagged With: Band 4, smc-6305-20-Earth Coordinates, smc-6524-20-Earth Coordinates, smc-776-30-Earth Coordinates

Copyright © 2014–2026 SmarterEd.com.au · Log in