Arthur invests $600 000 in an annuity that provides him with a monthly payment of $3973.00.
Interest is calculated monthly.
Three lines of the amortisation table for this annuity are shown below.
\begin{array} {|c|c|}
\hline
\textbf{Payment} & \textbf{Payment} & \textbf{Interest} & \textbf{Principal reduction} & \textbf{Balance} \\
\textbf{number} & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) }\\
\hline
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & 0.00 & 0.00 & 0.00 & 600\ 000.00 \\
\hline
\rule{0pt}{2.5ex} 1 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2520.00 & 1453.00& 598\ 547.00\\
\hline
\rule{0pt}{2.5ex} 2 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2513.90 & 1459.10 & 597\ 087.90 \\
\hline
\end{array}
- The interest rate for the annuity is 0.42% per month.
- Determine the interest rate per annum. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- Using the values in the table, complete the next line of the amortisation table.
- Write your answers in the spaces provided in the table below.
- Round all values to the nearest cent. (1 mark)
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|c|c|}
\hline
\textbf{Payment} & \textbf{Payment} & \textbf{Interest} & \textbf{Principal reduction} & \textbf{Balance} \\
\textbf{number} & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) }\\
\hline
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & 0.00 & 0.00 & 0.00 & 600\ 000.00 \\
\hline
\rule{0pt}{2.5ex} 1 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2520.00 & 1453.00& 598\ 547.00\\
\hline
\rule{0pt}{2.5ex} 2 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2513.90 & 1459.10 & 597\ 087.90 \\
\hline
\rule{0pt}{2.5ex} 3 \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}
- Let \(V_n\) be the balance of Arthur's annuity, in dollars, after \(n\) months.
- Write a recurrence relation in terms of \(V_0, V_{n+1}\) and \(V_n\) that can model the value of the annuity from month to month. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- The amortisation tables above show that the balance of the annuity reduces each month.
- If the balance of an annuity remained constant from month to month, what name would be given to this type of annuity? (1 mark)
--- 1 WORK AREA LINES (style=lined) ---