Let `f:[0, \infty) \rightarrow R, f(x)=\sqrt{2 x+1}`.
The shortest distance, `d`, from the origin to the point `(x, y)` on the graph of `f` is given by
- `d=x^2+2 x+1`
- `d=x^2+\sqrt{2 x+1}`
- `d=\sqrt{x^2-2 x+1}`
- `d=x+1`
- `d=2 x+1`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f:[0, \infty) \rightarrow R, f(x)=\sqrt{2 x+1}`.
The shortest distance, `d`, from the origin to the point `(x, y)` on the graph of `f` is given by
`D`
Straight line distance is the shortest.
`:.` Therefore, using pythagoras and given `f(x) = \sqrt{2x+1}`
`d^2` | `= x^2 + y^2` | |
`=x^2 + (sqrt{2x+1})^2` | ||
`= x^2 + 2x +1` | ||
`=(x + 1)^2` | ||
`d` | `=sqrt((x + 1)^2)` | |
`= x+1` |
`=>D`
Let `f : R → R,\ f (x) = x^3 - 5x`. Part of the graph of `f` is shown below.
Let `g : R → R, \ g(x) = x^3 - kx, \ k ∈ R^+`.
a. |
`text(Solve)\ \ f′(x)` | `= 0\ \ text(for)\ x:` |
`x` | `= ± sqrt15/3` |
`f(sqrt15/3) = -(10sqrt15)/9`
`f(−sqrt15/3) = (10sqrt15)/9`
`:.\ text(Turning points:)`
`(- sqrt15/3,(10sqrt15)/9)\ text(and)\ (sqrt15/3,-(10sqrt15)/9)`
b.i. `A(-1,4),\ \ B(1,–4)`
`m_(AB) = (4 – (−4))/(−1 – (1)) = −4`
`text(Equation of)\ AB, m=-4, text(through)\ \ (-1,4):`
` y – 4` | `= −4(x – (−1))` |
`:. y` | `= −4x` |
b.ii. | `d_(text(AB))` | `=sqrt((x_2-x_1)^2+(f(x_2)-f(x_1))^2)` |
`= sqrt((1- (- 1))^2 + (f(1) – f(−1))^2)` | ||
`= 2sqrt17` |
c.i. | `d_(text(CD))` | `=sqrt((x_2-x_1)^2+(g(x_2)-g(x_1))^2)` |
`=sqrt((1-(-1))^2+(g(1)-g(-1))^2)` | ||
`= 2sqrt(k^2 – 2k + 2)` |
c.ii. `text(Solve:)quad2sqrt(k^2 – 2k + 2) = k + 1quadtext(for)quadk > 0`
`:. k = 1quadtext(or)quadk = 7/3`
d.i. `text(Solve:)quada^3 – ka = a\ \ \ text(for)quad a,\ \ (a > 0)`
`:. a = sqrt(k + 1)`
d.ii. | `text(Area)` | `= int_0^(sqrt(k + 1))(x – g(x))\ dx` |
`= ((k + 1)^2)/4\ text(units)²` |
Consider the function `f(x) = -1/3 (x + 2) (x-1)^2.`
The diagram below shows part of the graph of `y = g(x)`, the tangent to the graph at `x = 2` and a straight line drawn perpendicular to the tangent to the graph at `x = 2`. The equation of the tangent at the point `A` with coordinates `(2, g(2))` is `y = 3-(4x)/3`.
The tangent cuts the `y`-axis at `B`. The line perpendicular to the tangent cuts the `y`-axis at `C`.
a.i. | `g(x)` | `= int f(x)\ dx` |
`=-1/3 int (x + 2) (x-1)^2\ dx` | ||
`=-1/3int(x^3-3x+2)\ dx` | ||
`:.g(x)` | `= -x^4/12 + x^2/2-(2x)/3 + c` |
`text(S)text(ince)\ \ g(0) = 1,`
`1` | `= 0 + 0-0 + c` |
`:. c` | `= 1` |
`:. g(x) = -x^4/12 + x^2/2-(2x)/3 + 1\ \ …\ text(as required)`
a.ii. `text(Stationary point when:)`
`g^{′}(x) = f(x) = 0`
`-1/3(x + 2) (x-1)^2=0`
`:. x = −2, 1`
b.i. |
`B\ text(is the)\ y text(-intercept of)\ \ y = 3-4/3 x`
`:. B (0, 3)`
b.ii. `m_text(norm) = 3/4, \ text(passes through)\ \ A(2, 1/3)`
`text(Equation of normal:)`
`y-1/3` | `=3/4(x-2)` |
`y` | `=3/4 x -7/6` |
`:. C (0, −7/6)`
b.iii. | `text(Area)` | `= 1/2 xx text(base) xx text(height)` |
`= 1/2 xx (3 + 7/6) xx 2` | ||
`= 25/6\ text(u²)` |
c.i. | `text(Solve)\ \ \ g^{′}(x)` | `= -4/3\ \ text(for)\ \ x < 0` |
`=> x` | `= −1` | |
`g(-1)` | `=-1/12+1/2+2/3+1` | |
`=25/12` |
`:. D (−1, 25/12)`
c.ii. `text(T) text(angent line at)\ \ D:`
`y-25/12` | `=- 4/3(x+1)` |
`y` | `=- 4/3x + 3/4` |
`DE\ \ text(intersects)\ \ AE\ text(at)\ E:`
`-4/3 x + 3/4` | `= 3/4 x-7/6` |
`25/12 x` | `= 23/12` |
`x` | `=23/25` |
`:. E (23/25, -143/300)`
`:. AE` | `= sqrt((2-23/25)^2 + (1/3-(-143/300))^2)` |
`= 27/20\ text(units)` |
Consider the graph of the function defined by `f: [0, 2 pi] -> R,\ f(x) = sin (2x).`
The square of the length of the line segment joining the points on the graph for which `x = pi/4 and x = (3 pi)/4` is
`A`
`text(When)\ \ x=pi/4,\ \ f(x) = sin(pi/2)=1`
`text(When)\ \ x=(3pi)/4,\ \ f(x) = sin((3pi)/2)=-1`
`text(Let)\ \ z` | `= text(distance between)\ (pi/4, 1) and ((3pi)/4, −1)` |
`z^2` | `= ((3pi)/4 – pi/4)^2 + (−1 −1)^2` |
`=pi^2/4 + 4` | |
`= (pi^2 + 16)/4` |
`=> A`