Let \(h\) be the probability density function for a continuous random variable \(X\), where
\(h(x)=\left\{
\begin{array} {c}
\rule{0pt}{2.5ex} \ \ \ \ \ \dfrac{x}{6}+k \rule[-1ex]{0pt}{0pt} & -3 \leq x<0 \\
\rule{0pt}{2.5ex} \ \ -\dfrac{x}{2}+k \rule[-1ex]{0pt}{0pt} & 0 \leq x \leq 1 \\
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & \text { elsewhere } \\
\end{array}\right.\)
and \(k\) is a positive real number.
The value of \(\text{Pr}(X<0.5)\) is
- \(\dfrac{1}{2}\)
- \(\dfrac{15}{16}\)
- \(\dfrac{3}{16}\)
- \(\dfrac{49}{48}\)